
© Koninklijke Brill NV, Leiden, 2011 DOI 10.1163/187498311X576262

Terrestrial Arthropod Reviews 4 (2011) 95–130 brill.nl/tar
T A R

       Evolutionary adaptation of oniscidean isopods to terrestrial 
life: Structure, physiology and behavior  

    Elisabeth   Hornung    

 Szent István University, Faculty of Veterinary Science, Institute for Biology, H-1077 
Budapest, Rottenbiller u. 50, Hungary, 
e-mail:  Hornung.Erzsebet@aotk.szie.hu

Received: 15 November 2010; accepted: 29 December 2010   

  Summary 
 Terrestrial isopods (Oniscidea) are the most successful crustacean colonizers of land habitats. From an 
evolutionary point of view, they are excellent examples of model organisms that have adaptated to terres-
trial life. Th e aquatic-terrestrial branching of the phylogenetic lines of the Oniscidea occurred in the 
marine littoral zone. Th e most oniscid species-rich areas are found in the circum-Mediterranean region. 
Studies on the morphology, physiology, ecology and biogeography of Oniscidea highlight the diversity of 
the group. Th ey successfully colonized a wide range of terrestrial habitats by solving such ecological and 
physiological challenges as reproduction, respiration, excretion and protection against desiccation. During 
terrestrial adaptation, they evolved diverse morphological, ecological and behavioral traits. Th is review 
summarizes our present knowledge of some aspects of the morphology, physiology and behavior as it 
related to oniscidean adaptation to the terrestrial realm.  
© Koninklijke Brill NV, Leiden, 2011
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     Introduction 

 Oniscidean isopods (Malacostraca, Peracarida) are the most successful colonizers 
of terrestrial habitats among the Crustacea. Th ere are around 3700 known species, 
representing the largest isopod suborder (Schotte et al.,  1995 - onwards; Schmalfuss, 
 2003 ). Th e cosmopolitan distribution of this monophyletic taxon (Schmidt,  2008 ) 
might indicate their ancient origin. Oniscidean isopods probably became terrestrial 
in the second half of Paleozoic (Cloudsley-Th ompson,  1988 ). It is believed that 
the branching of the semi-terrestrial, terrestrial phyletic lines happened in marine 
littoral conditions without a freshwater stage (Schmalfuss,  2005 ). By the present 
classifi cation, the Oniscidea are divided into fi ve lineages ( Figure 1 ): Ligiidae, Tylidae, 
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Mesoniscidae, Synocheta and Crinocheta (Schmalfuss,  1989 ; Schmidt,  2008 ). Species 
of  Ligia  (Ligiidae) have morphological, physiological and behavioral characteristics 
that help us imagine what an intermediate form between ancestral marine and the 
modern terrestrial forms may have look like (Carefoot and Taylor,  1995 ; Schmidt, 
 2008 ) . 

 Oniscideans are fascinating animals, both biogeographically and ecologically. While 
their dispersion ability is rather limited, they are cosmopolitan and are extremely 
diverse ecologically. Th e geographical distribution of the taxa is fully explored in south-
ern and western Europe. Hot spots of high species’ numbers, enriched with endemics, 
are found in the circum-Mediterranean region (Sfenthourakis et al.,  2007 ), and a 
defi nitive latitudinal gradient in species richness has been shown from the Mediterranean 
to the northern regions in Europe (Hornung and Sólymos,  2007 ). Th e pattern is clear 
regardless of taxonomy: a gradual decrease of species richness towards the north is 
consistent in total species number and in species number within species-rich families, 
respectively (e.g. Philosciidae, Armadillidiidae, Oniscidae). 

 Th e ecological distribution of oniscideans ranges from supralittoral zones far 
into dry land, from sea level to high mountains and caves. Although most species 
of oniscideans are terrestrial, some are amphibious and live in littoral zones, such as 
 Ligia ,  Tylos ,  Littorophiloscia , genera of the family Scyphacidae ( Scyphax  and  Actaecia ) 
as well as a number of other genera. Several species of Synocheta (mainly in the fam-
ily Trichoniscidae) and some species of Crinocheta secondarily evolved into freshwa-
ter or cave dwelling forms (Schmalfuss,  2005 ). Th is evolutionary step has repeated 
itself several times independently and convergently in diff erent groups (Tabacaru, 
 1999 ). Certain oniscideans live either in surface waters or under very wet conditions; 
they are stygobitic and live in hypersaline groundwater systems ( Haloniscus ), cave 
waters ( Cantabroniscus ) or submarine caves ( Utopioniscus ). Many species live in 
subterranean habitats and several of them are real troglobionts - troglobitic species 
found in tropical caves (e.g. lava tubes of Hawaiian Islands) (Taiti and Howarth, 
 1997 ; Taiti,  2004 ). Species adapted to desert environments represent the other end 
of a terrestrialization gradient (e.g.  Hemilepistus reaumuri  (Milne-Edwards, 1840), 
 Porcellio olivieri  (Audouin, 1826) or  Agabiformius obtusus  (Budde-Lund, 1909), 
Warburg,  1995 ; Baker et al.,  1998 ; Baker  2005 ). Apart from these extreme excep-
tions, all oniscideans occur in moist microhabitats within terrestrial biotopes and 
show cryptic behavior, hide in shelter sites, such as under stones, logs in leaf litter 
(Schmalfuss,  1978 ). To inhabit so a wide range of habitats, isopods had to face  several 

  Figure 1.     Schematic phylogenetic relationship among oniscidean lineages (Erhard,  1996 ).    
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ecological and physiological stressors. During their evolutionary adaptation, the onis-
cideans have developed diff erent morphological, ecological and behavioral solutions 
to the terrestrial ways of reproduction, respiration, excretion and protection against 
desiccation. 

 Th e main trends of oniscidean morphological, physiological changes (compared 
to marine species) are: (1) reduction in size; (2) water-resistant cuticle (Bursell,  1955 ); 
(3) diverse surface morphology - increase in number of surface structures (Schmalfuss, 
 1978 ; Holdich,  1984 ); (4) pleodopodal lungs (Edney,  1954 ; Hoese,  1982a ; Cloudsley-
Th ompson,  1988 ; Schmidt and Wägele,  2001 ); (5) water conducting system (Hoese 
 1981 ,  1982b ; Horiguchi et al.,  2007 ); and (6) closed brood pouch (Hoese,  1984 ) which 
was of key importance in the life of isopods on land. We can recognize the diverse 
trends on recent, living species. In addition, we will mention the ecomorphological 
and behavioral aspects of drought avoidance, habitat selection, foraging and life hitory 
characteristics. 

 A review and a comprehensive book by Warburg ( 1987 ,  1993 , respectively) gives an 
overview of terrestrial adaptation in land isopods (Oniscidea). Several papers systema-
tize and broaden our knowledge on diff erent aspects of terrestrial isopods, all impor-
tant in their land-adaptation. Such features include, phylogeny (Schmidt,  2008 ), 
reproduction (Warburg,  1994a ,  b ; Kight,  2008 ), ultrastructure, calcium deposition 
and mineral distribution in the cuticle (Ziegler,  2004 ; Hild et al.,  2009 ; Matsko et al., 
2010), surface morphology (Schmalfuss,  1975 ,  1977 ,  1978 ; Holdich,  1984 ), water 
balance (Edney,  1977 ), water vapor absorption and ammonia volatization (Wright and 
O’Donnell,  1995 ), respiratory structures (Hoese,  1982a ,  1983a , b ; Ferrara et al.,  1991 , 
 1994 ,  1997 ; Schmidt and Wägele,  2001 ; Paoli et al.,  2002 ; Gruber and Taiti  2004 ), 
marsupial structure (Hoese,  1984 ; Hoese and Janssen,  1989 ), water conducting sys-
tem (Hoese,  1981 ,  1982b ), structure and development of digestive system (Milatovič 
et al.,  2010 ; Štrus et al.,  2008 ), intestinal microbiota (Kostanjšek et al.,  2006 ), nutri-
tional and developmental aspects of isopod land adaptation (Štrus et al.,  1995 ; Štrus 
and Blejec,  2001 ; Zimmer  2002 ), as well as eco-morphological (Schmalfuss,  1984 ) or 
evolutionary strategies (Schmalfuss,  1998 ). 

 However, our knowledge on oniscideans or isopods has increased signifi cantly dur-
ing the last decade. A complete bibliography of terrestrial isopod literature - containing 
publications on all biological aspects - was fi rst published in 2002 (Schmalfuss 
and Wolf-Schwenninger). Th at bibliography was updated in 2004 and is available 
on the internet ( http://www.naturkundemuseum-bw.de/stuttgart/projekte/oniscidea
-catalog/ ). Since 2004, the publications of three Symposia proceedings, in Crete 
(Greece), Aveiro (Portugal) and Tunis (Tunisia) (Sfenthourakis et al.,  2004 ; Loureiro 
et al.,  2005a ; Zimmer et al.,  2008 , respectively), and several additional papers – among 
them publications dealing with the above mentioned aspects of land adaptation – have 
enriched our present knowledge about oniscideans. 

 Th e present paper aims to summarize and update our knowledge on several struc-
tural, physiological and behavioral aspects of terrestrial isopods that have contributed 
to make them so successful in land colonization.  
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  Morphological and physiological adaptations  

  Cuticle  

 Th e outer protective sclerotized tegumental cover, the cuticle or exoskeleton, is the 
main barrier between these small animals and their environment. In spite of the fact 
that their cuticle is relatively permeable to water (Quinlan and Hadley,  1983 ), wood-
lice can survive under a wide variety of terrestrial conditions by fi nding a locality with 
the appropriate humidity requirements. 

 Th e cuticle is composed of an organic matrix containing chitin and sclerotized pro-
teins. Fabritius et al. ( 2005 ) describe the architecture of this organic matrix. Th e min-
eral phase consists of mainly calcium carbonate (CaCO 3 ). Hild et al. ( 2008 ) summarized 
the known details on the fi ner cuticular structure and the forms of calcium carbonate. 
Recently, Matsko et al. (2010) proved experimentally the importance of silicon in the 
early stage of cuticle biocalcifi cation in  Ligia italica  Fabricius, 1798. 

 Th e exoskeleton of isopods has four well-defi ned layers: the outer epicuticle, the 
exocuticle, the endocuticle and the innermost membranous layer ( Figure 2A ; see also 
 Figure 6A  below). Individual layers may have sublayers, depending on species (Hild 
et al.,  2008 ). Th e fi rst three layers are calcifi ed and contain calcite crystals and amor-
phous calcium carbonate (Roer and Dillaman,  1984 ). Compere ( 1991 ) has described 
the fi ne structure of the thin superfi cial epicuticle on  Oniscus asellus  Linnaeus, 1758. 
Compere stated that the overall structure of the isopod cuticle follows that of crusta-
ceans, the mineralized exoskeleton has an additional waxy and a cement layer. Th ese 
two layers might be the consequences of terrestrial adaptation.  

 To be able to grow in size, terrestrial isopods molt frequently throughout their lifes. 
Molting has two phases: the fi rst is the shedding of the posterior part of the cuticle. 
After one day, this is followed by the molt of the exoskeleton’s anterior half ( Figure 3 ). 
Before molting, calcium (in the form of calcium carbonate or calcium phosphate) is 
reabsorbed fi rst from the posterior half of the cuticle. It is stored in deposits partially 
located in the anterior region, in the ecdysial space, and in the haemolymph. After 
molt, animals reuse these stocks for mineralization of the new cuticle (e.g. Steel, 
 1993 ; Ziegler et al.,  2007 ). Th ere is a high interspecifi c variation in the method and 
location of calcium deposition (Ziegler,  2004 ). Th e molting individual often consumes 
the exuvia to regain mineral content (Steel,  1993 ; personal observation in the fi eld, 
 Figure 3C ). 

 Several valuable papers have been published recently concerning the mysterious and 
exciting processes of calcareous deposition, calcariferous transport processes and the 
anatomic changes in the cuticle, especially during molting, (e.g. Neues et al.,  2007 ; 
Ziegler et al., 2005, 2007; Hild et al.,  2009 ; Štrus and Blejec,  2001 ).   

  Surface morphology, perception  

 Electron microscopic (SEM) scanning is a splendid method of studying the mor-
phology of isopod cuticular surfaces. A great variety of surface ornaments are present 
on the dorsal surface of terrestrial isopods ( Figures 2B -F and  4 ), such as sensory and 
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  Figure 2.     (A) Cross section of  Armadillidium vulgare  tergite: layers of the cuticle with an innervated 
cuticular extension (photo by D. Csonka); ec: epicuticle; pc: procuticle; hy: hypodermis; sm: sceletal 
muscle; t and black arrow: exteroreceptor (‘tricorn’); star: nuclei of supporting cells around a nerve (scale 
bar = 20 μm). (B) Antennal setae of  Platyarthrus schoblii  Budde-Lund, 1885 (20 μm). (C)  Protracheoniscus 
major  (Dollfus, 1903) tergal surface with plaques and sensory setae (100 μm). (D)  P. hoff mannseggii  
Brandt, 1833 tergite surface (20 μm). (E) Noduli laterales (nl) in  Protracheoniscus politus  (approximate 
length of isopod is 12 mm). (E) Th e same by SEM (100 μm). All illustrations in this and other fi gures were 
prepared by the author unless another name is mentioned (parenthetically).    
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  Figure 3.     Molting. (A)  Armadillidium vulgare  after shedding the posterior part (pale and soft); approxi-
mate length of isopod is 17-20 mm. (B)  Porcellionides pruinosus  (12 mm), after shedding the posterior 
part; note the freshly molted posterior being much wider and grayish than the anterior (“old”) one. 
(C) Freshly molted  Protracheoniscus politus  (C. Koch, 1841) (anterior part) feeding on exuvia.    

non-sensory structures, including papillae, setae, tricorns, microscales, pits, minute 
plaques, tubercles, ridges, pores (Powell and Halcrow,  1982 ). Innervated cuticular 
extensions mediate sensory information (Holdich,  1984 ) of behavioral responses. 
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Holdich and Lincoln ( 1974 ) found no sexual diff erences in this morphology in their 
studies on  Porcellio scaber  Latreille, 1804. Dorsal scale-setae in diff erent forms, anten-
nal, uropodal spikes are unique to oniscideans presumably accompanying terrestrial 
adaptation ( Figures 2 and 4 ; Holdich,  1984 ).  

 Scale like, circular or polygonal micro-ridges ( Figure 4A ) provide anti-adhesive 
qualities, preventing small, wet particles from sticking to the animals’ cuticle 
(Schmalfuss,  1975 ,  1977 ,  1978 ). Th e dorsal surface of the exoskeleton is adapted 
to the microhabitat type (Schmalfuss  1984 ). Th ere is great variation in surface struc-
tures, from very smooth surfaces to rather ornate ones with depressions, groves, 
ridges, tubercles, plaques, scales etc. (Schmalfuss,  1978 ; Holdich,  1984 ) ( Figures 2B -F 
and   4). Th ese surface formations, together with other external characteristics, 
were categorized by Schmalfuss ( 1984 ) into fi ve eco-morphological strategies to 
show the high correlation between body-construction and habitat, and microhabi-
tat features (i.e. ecological preferendum and antipredator strategies), detailed below 
(see also  Figure 13  below).

   1.   Th e real epigean forms are either slow moving animals with fl at and broad bod-
ies, strong and short pereopods (‘clingers’ like  Trachelipus ,  Porcellio, Nagurus ), 
or fast moving, narrow and elongated bodied ones with a smooth surface and 
long pereopods, ‘runners’ (families Ligiidae and Philosciidae, genus  Trichoniscus , 
 Protracheoniscus ,  Porcellionides ). Th e latter type is thought to represent the most 

  Figure 4.     Tergal surfaces of (A)  Platyarthrus schoblii : tergal ridges (scale = 100 μm), (B)  Armadillidium 
versicolor  (50 μm), (C)  Porcellio scaber : tubercles covered by sensory tricorns (250 μm), and (D)  Porcellionides 
pruinosus : tricorns and waxy spheres (250 μm).    
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ancient type of terrestrial forms (see below  Figure 13F -I and C-D, respectively; 
Schmidt,  2008 ).  

  2.   True soil dwelling, endogean species, ‘creepers’—Onscidae, such as  Bathytropa,  
Trichoniscidae as  Graeconiscus , Plathyarthridae as  Platyarthrus , Stenoniscidae as 
 Stenoniscus —are mostly pygmy forms with convex, elongated body, short append-
ages. Th ey do not conglobate, or roll forming a sphere. Th ey depend strongly on 
conditions of high humidity because of their high cuticular evaporation rates. 
However, they have dorsal longitudinal ribs to prevent passive captivity inside 
water drops due to decreased surface and thereby decreased surface tension 
(see  Figure 13A -B below; Schmalfuss,  1984  ).  

  3.   Th e conglobating forms are called ‘rollers’ (Armadillidae, Eubelidae, Armadillidii
dae, Sphaeroniscidae, and Tylidae). Th eir body is highly convex and they are able 
to roll up into a ball (see  Figure 13J -M below).  

  4.   Th ere are ‘spiny’ forms that live outside the litter layer (Eubelidae such as 
 Panningillo ; Armadillidae such as  Acanthoniscus ,  Echinodillo ,  Tridentodillo ). Th ese 
are mainly tropical, subtropical species.  

  5.   Th e so-called ‘non-conformists’ (about 10%) that do not fi t into the previous 
categories (e.g. commensalists in ant nests as  Plathyarthrus  spp.,  Schoeblia ; soil dig-
gers as  Hemilepistus, Leptotrichus ). For further details and examples, see Schmalfuss 
( 1984 ). Th e eco-morphological defense strategies of land isopods are strengthened 
by the species specifi c mineral distribution in their exoskeleton (see  Figure 13N -P 
below; Hild et al.,  2008 ).    

 Humidity is a key factor limiting the distribution of terrestrial isopods. Th e function 
of ‘moisture monitoring’ is provided by fl agellar aesthetasks found on the apical article 
of the fi rst antennae and on the fl agellar articles of the second antennae (Schmalfuss, 
 1998 ). Extreme diminution of the fi rst antennae in terrestrial species was a vital evolu-
tionary development in favour of protection against predators ( Figure 5 ). Th e sensory 
function of the minute antenna is essential in the task of fi nding suitable humidity 
conditions for short and long-term survival (Schmalfuss,  1998 ).  

 Isopods are less resistant to desiccation than insects, and their behavioral reactions 
to humidity changes have enabled them to colonize a great variety of land habitats 
(reviewed by Edney,  1968 ; Lindquvist, 1968). Th eir existence, distribution on diff er-
ent scales (from global to microscales) depends on the species’ ecological tolerance and 
on the suitable habitat conditions (e.g. Hornung et al.,  2008 ).  

  Cuticular transpiration 

 Cuticular lipids and /or hydrocarbons are supposed to reduce transcuticular water loss 
(Hadley and Warburg,  1986 ). Th ey are also able to maintain the water level of the 
cuticle against desiccation by a supposed active regulating mechanism (Lindquist, 
 1968 , 1972). For instance, early transpiration studies of Bursell ( 1955 ) suggested that 
the cuticle of isopods is a highly effi  cient barrier to water loss. Th e values calculated 
closely approximate those of other terrestrial arthropods. Th e permeability   of the onis-
cidean cuticle is limited by the lipoids impregnating the   endocuticle, such that when 
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the temperature is raised above the lipoid melting point,   there is a marked increase in 
permeability to water and water loss (Bursell,  1955 ). However, Hadley and Quinlan 
( 1984 ) think that lipids, although present in the cuticle, do not provide an eff ective 
barrier to water loss. Quinlan and Hadley ( 1983 ) measured cuticular permeability on 
dead isopods, where the regulating mechanism cannot act. Th ey found, in  Porcellio 
laevis  Latreille, 1804 and  Porcellionides pruinosus  (Brandt, 1833) at 30°C, that water 
loss through the cuticle was rather high (55-75%) during the fi rst 3 hours of exposure, 
in mg/cm 2  surface area and permeability increased with higher temperatures (from 
25°C to 50°C). 

 Although cuticular dehydration is a major issue in isopod life, water can be taken 
up by cutaneous absorption (Coenen-Stass,  1981 ). Terrestrial isopods are capable 
of active water vapor absorption (WVA) (Wright and Machin,  1990 ,  1993a ,  b ). 
Diff erent species vary in integumental permeability and have diff erent lethal relative 
humidity (RH) limits: the loss rate is diff erent for species adapted to diverse habitat 
types on a humidity scale (Edney,  1977 ). All species are able to replenish tolera-
ble water losses under given humidity conditions and they can be classifi ed by their 
tolerance limits into hygric, mesic, xeric categories, in accordance to phylogeny and 
habitat requirements. Representatives of Synocheta appear to have no WVA capabil-
ity, as was shown gravimetlically by Wright and Machin ( 1990 ,  1993a ). Th eir cry-
ptozoic way of life and close ties with wet habitats, may explain this (Wright and 
O’Donnell,  1995 ).  

  Figure 5.     Th e minute fi rst antenna of  Porcellio scaber  with fl agellar sensory appendages (aesthetasks) is 
covered and protected by the second, large antenna (scale bar = 500 μm).    
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  Tegumental glands 

 Th ere are tegumental glands, with openings widely distributed either on the surface of 
the cuticle or on the lateral surface/edges of the thoracic and abdominal segments, and 
on the uropods, respectively ( Figures 6  and  7 ; Gorvett,  1951 ,  1952 ). Th ese dermal 
glands have a secretory function, occur only in land isopods, and are probably con-
nected to terrestrial adaptation (Gorvett,  1951 ,  1956 ). Weihrich and Ziegler ( 1997 ) 
described the unique, lobed structure of these exocrine glands ( Figure 6A ). Th ey found 
that the smaller lateral plate glands and the larger uropod glands are very similar in 
anatomy. Th e functional signifi cance of these lobed type glands perhaps is antipredator 
defense. Gorvett ( 1956 ) experimentally tested his “limited defence hypothesis”. 
According to this hypothesis, the main potential predators of woodlice are spiders. Th e 
hardened, drawn-out threads of uropod gland secretum ( Figure 6C ) can be used as an 
attachment to the substratum (e.g. in the case of wind-blown juveniles, Hornung, pers. 
obs.). Gruner ( 1966 ) suggested that these glands evolved fi rst as excretory structures 
and developed into defense ones later ( Figures 6  and  7 ). Th e development of lobed 
glands might be correlated with the evolutionary position and the ecological condi-
tions (habitat) of the isopod species.    

  Water conducting system: a solution to multiple regulation problems 

 An important problem for life on land in isopods was to evolve an adaptive solution 
for thermoregulation, excretion, osmo- and ion-regulation under terrestrial conditions. 
Th e evolution of a water conducting system (WCS) is important in overcoming these 
problems (Hoese,  1984 ). Th is system consists of scale rows ( Figure 8A -B) holding 
water by capillary forces (Hoese,  1981 ,  1982b ). WCS or capillary conducting system 
(Hoese,  1984 ) allows also nitrogenous waste to be excreted as ammonia gas, after water 
resoption. Such a phenomenon is unique to oniscid isopods. Hoese ( 1981 ) gives a 
detailed account of the development of theories on the water conducting system, which 
was fi rst described by Verhoeff  in 1917 (c.f. Hoese,  1981 ).  

 In vivo and SEM investigations of 56 isopod species (ranging from marine and 
freshwater to terrestrial types) resulted in distinguishing two structurally diff erent types 
of water conducting systems for oniscideans (Hoese  1981 ). Th ese are the ‘ Ligia ’- and 
the ‘ Porcellio ’-types. 

 Th e ancient form (‘ Ligia  type’, named by Hoese,  1981 ) is an open system, that 
uptakes water and excretes diluted nitrogenous waste, urine. Th is system allows water 
uptake by capillary forces through the 6-7th pereopods. Water is forwarded to other 
body parts by a water conducting system. Th e WCS consists of belts of scale-rows on 
sternites along the insertions of the legs, the antennae and partly the sixth and seventh 
walking leg. Th ese structures are considered homologous and must have evolved in the 
common ancestor of all Oniscidea (Schmalfuss,  2005 ). Th e group possessing  Ligia  
type system includes mainly amphibious isopods, some members of Ligiidae and few 
species of Trichoniscidae families. Th e exact details of its structure and the precise 
functioning of this system were recently studied in  Ligia exotica  Roux, 1828 (Horiguchi 
et al.,  2007 ). Horiguchi and co-workers succeeded in demonstrating the function 
and role of each part of 6th and 7th pereiopod in the process (see  fi gure 5  therein). 
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  Figure 6.     (A) Cross section of an epimeron ( Armadillidium vulgare ): structure of cuticle (see also 
 Figure 2 ; ec: epicuticle, pc: procuticle, hy: hypodermis) and tegumental lobed gland (ltg) (Photo: D. 
Csonka), t: tricorn (scale bar = 100 μm). (B) Each tergite and the uropods have a pore-fi eld, here with 
secretum drops in  Porcellio scaber  (size of the animal is 14-18 mm). (C)  P. scaber  uropodal gland secre-
tum with drawn-out thread (arrows). (D) Schematic fi gure of  Porcellio scaber  showing the location of tegu-
mental (anterior arrowhead) and uropodal glands (posterior arrowhead). (E) SEM of a tegumental gland 
pore-fi eld (tpf ) covered by secretum ( Porcellio scaber ) located on the margin of the tergite; p: plaques 
(scale bar = 100 μm).    
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  Figure 7.     (A) Tergal surface of the of  Protracheoniscus politus  covered by secretum (scale bar = 200 μm). 
(B) Th e same surface in higher magnifi cation with precipitated secretum (scale bar = 100 μm).    

Th ey demonstrated that the two superimposed pereiopods form a gutter for capillary 
action. Th e diff erent surface formations complement one another and they cannot act 
separately. Also, the system has regulatory ability precluding unnecessary passive water 
uptake (Horiguchi et al.,  2007 ). Water forwarded by this system also supplies pleopods 
for respiration. Interestingly, uptake of stained water proved that the anus (but not the 
oral cavity or the foregut, contrary to the suggestion of Hoese,  1981 ) is involved in this 
putatively ancestral water conducting system. 

 Th e more derived ‘ Porcellio  type’ WCS was stated to be a closed one, not involving 
pereiopods in the process. Urine excreted by the maxillary nephridium and glands 
is forwarded caudally. In higher terrestrial isopods (‘ Porcellio ’-type), liquid water can be 
taken up by mouth (Hoese,  1981 ), by the rear appendages, or uropods (Spencer 
and Edney,  1954 ) and, as water vapor, through the pleoventral space (Wright and 
Machin,  1990 ,  1993a ,  b ; Wright and O’Donnell,  1992 ,  1995 ). Meanwhile, diluted 
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  Figure 8.     (A) Schematic representation of the water conducting system (WCS) and marsupium with 
oostegites (o) and eggs (e) (redrawn after Schmidt,  2008 ). (B) SEM photo of the WCS:  Porcellio laevis  (by 
courtesy of H. Schmalfuss). (C) Detail of the brood-pouch ( Porcellionides pruinosus ) with eggs (e), ooste-
gites (o) and cotyledon (Co). (D) Marsupium of  Trachelipus rathkii : oostegits (o) and eggs (e) (pereipods 
1-5 removed). (E) Gravid  Porcellionides pruinosus.      Note infl ated venter (m).
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ammonia is excreted. Using well-hydrated  Porcellio scaber  individuals exposed to a 
moistened substratum and saturated air, Drobne and Fajgelj (1993) showed that water 
is uptaken both by mouth and through the uropod endopodites. Th us, they modifi ed 
Hoese’s (1981) model and proved that the  Porcellio  type water conduction system - and 
most probably that of  Armadillidium  - is also open. Th e main diff erence between the 
two WCS types is in the route by which the external water is taken up: In  Porcellio,  
the water is taken up by uropods and not by 6th and 7th pereiopods, as is the case 
with  Ligidium  and  Ligia . Subsequently, this water is also distributed along the water 
conducting system, but it appears fi rst in the pleoventral space (Drobne and Fajgelj, 
 1993 ). 

 Th e more developed the lung is, the less watering is needed as the animal is rela-
tively more water independent. Th e WCS is a multifunctional system that (1) aids 
in respiration by wetting the lung epithelia (the activity of WCS is in negative cor-
relation with the development of pleupodal lungs); (2) supports thermoregulation 
through water conduction – the two types have diff erent function in this respect: the 
 Ligia  type shows water uptake and water distribution on the whole body surface 
while in  Porcellio  type there is a hydrophobic surface (scales fi lled with air); (3) is 
essential for excretion: similarly, to true aquatic organisms, they are ammoniotelus or 
excrete their waste nitrogen principally as ammonia. Urine, excreted by the maxillary 
nephridium and glands, is channeled into WCS. Faeces contain only about 10% of the 
N excretum, the rest is eventually evaporated as NH 3  gas through the WCS (Hoese, 
 1981 ).  

  Pleopodal lungs 

 In isopods, oxygen uptake happens mainly through the abdominal appendages. In 
aquatic species these take the form of gills, but the oxygen uptake organs in land 
(mainly mesic and xeric habitats) isopods evolved in several ways on the pleopod 
exopodites for aerial respiration during terrestrial adaptation (Hoese,  1982a ). In addi-
tion, endopodites keep their gill-like structure and function in most of the terrestrial 
species (Becker,  1936 ; Cloudsley-Th ompson,  1975 ). Th e effi  ciency of aquatic respira-
tion depends on the extent of their adaptation to land: less adapted, littoral species 
(e.g.  Ligia pallasii  Brandt, 1833) survive for a long time under (sea) water (Taylor and 
Carefoot,  1993 ). 

 Th e evolution of the respiratory surface on the pleopodal exopodites parallels 
the phylogeny and adaptations to colonize terrestrial habitats along a humidity 
gradient. Th e anatomy, the structure, and the functional principles show diff erent 
evolutionary routes ( Figure 9 ; Hoese,  1981 ,  1982a ,  1983a ,  1983b ,  1984 ; Ferrara et al., 
 1991 ,  1997 ; Paoli et al.,  2002 ; Gruber and Taiti,  2004 ). Taiti et al. ( 1998 ) as well as 
Schmidt and Wägele ( 2001 ) discussed the evolution of oniscidean respiratory struc-
tures in the context of phylogenetic relationships, based on morphological characters. 
In the most primitive oniscideans, the thin ventral integument of the exopodites is 
the place of respiration. Respiration takes place through a folded surface, which makes 
up a signifi cant part of the dorsal wall of the pleopodal exopodite ( Figure 9A a, C). 
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Th ese foldings vary depending on species (Gruber and Taiti,  2004 ). Th is simple, open 
and folded epithelial surface on the exopodites of pleopods could be the fi rst stage of 
the morphological phylogenetic developmental line. Th e next phylogenetic stage is a 
weakly wrinkled surface followed by a partly covered respiratory fi eld ( Figure 9Aa , D) 
with strongly wrinkled surface and the last stage is a completely internalized lung 
with spiracles and water-repellent surface ( Figures 9Ac , E-H a nd  10). During  evolution, 
the respiratory surface becomes increasingly separated from the atmosphere as its 
surface area is expanded by inward foldings. It becomes progressively more covered and 
is connected to the environment through respiratory apertures or spiracles of decreas-
ing size during adaptation ( Figures 9E -G and  1 0) in the most advanced closed lungs, 
spiracles are surrounded by a water-repellent perispiracular area (Hoese,  1982a ; Ferrara 
et al.,  1991 ; Schmidt and Wägele,  2001 ). Th e respiratory epithelium within a pleop-
odal lung is folded with many small branches ( Figure 11 ). Th e surface morphology 
of the perispiracular region has a modular, microsculptured structure ( Figure 9B ) 
(e.g. Mödlinger,  1931 ; Ferrara et al.,  1994 ; Schmidt and Wägele,  2001 ; Paoli et al., 
 2002 ). Mödlinger ( 1931 ) described a species-specifi c diff erence in shape of this struc-
ture in species of  Porcellio  based on cross-sections viewed under a light microscope 
(LM). A similar, species-specifi c feature can be recognized in species of  Armadillidium  
( Figure 9B ; Csonka et al., pers. comm.).    

 Th e highest level of development appears in species inhabiting extreme dry habitats, 
mainly deserts: the tubular structure inside, penetrates into the body cavity ending in 
so called “lacunae laterales”, as in species of  Periscyphis  (Ferrara et al.,  1997 ). In the 
desert-living genera ( Periscyphis, Hemilepistus  and probably more), the spiracle is close-
able (Ferrara et al.,  1991 ,  1997 ). 

 Covered lungs can be polyspiracular or monospiracular, depending on the number 
of openings: monospiracular lungs ( Figures 9E -F and  10 A, B, D) are the most com-
mon type of lungs. Polyspiracular lungs are characterized by several spiracles going into 
respiratory trees within the pleopodal exopodites ( Figures 9G -H and  10 C, E, F). Th e 
number of spiracles usually decreases from the fi rst to the last pleopod (Gruber and 
Taiti,  2004 ). A single spiracle is followed inside the exopod by an atrium which gives 
rise to narrow lacunae in a compact tissue or branches out into many respiratory 
tubules ( Figure 11 ) of decreasing diameter (Paoli et al.,  2002 ). 

 Th e structural and correlating functional adaptations of respiratory organs might be 
the main factor in successful colonization of diverse types of land habitats. Th e devel-
opmental stages of lungs have evolved several times convergently during evolution of 
isopod lineages. At each stage, at least six fold analogous branching steps have evolved. 
Th e independent evolution of diff erent types of pleopodal lungs has been demon-
strated in the Armadillidae, Eubelidae, Philosciidae, and Tylidae (Hoese,  1983a ; Ferrara 
et al.,  1991 ,  1994 ; Taiti et al.,  1998 ; Paoli et al.,  2002 ). 

 Th e pleopodal lungs vary not only in structure but also in number. For example, in 
the Eubelidae (216 species) a phylogenetic series of intermediates can be found, begin-
ning with no lungs (secondary reduction) through 1, 2, 3 and 5 pairs of lungs (detailed 
schematic presentation in Ferrara et al.,  1991 ). A study of 90 species of Armadillidae 
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   Figure 9 . Lungs (pseudotracheae). (A) Th e main evolutionary steps of the development of terrestrial 
respiratory organs terrestrial isopods; RS: respiratory surface, PSA: perispiracular area, S: spiracle; 
(a) Open, folded respiratory surface of pleopodal exopod; (b) partly covered type; (c) internal, closed 
respiratory area, opening (spiraculum) surrounded by perispiracular area. (B) Cross section of peris-
piracular area of  Armadillidium vulgare  (scale bar = 100 μm). (C-H) SEM images of the diff erent lung 
types, Photos’ courtesy of S. Taiti; (C-D) Uncovered lungs; (C)  Atracheodillo marmorivagus,  1st exopod; 
(D)  Synarmadilloides pila,  2nd exopod; (E-F) Covered, monospiracular lung ( Aethiopopactes nigricornis,  
3rd exopod); (G-H) Covered, polyspiracular lung ( Somadillo taramassoi , 3rd exopod); Scale bar in C, D, 
E, F and H = 0.1 mm, in G = 1 mm.    
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(57 genera) strengthened the descriptions and statements above: all forms of respira-
tory organs known in Oniscidea are present at family level (Gruber and Taiti,  2004 ). 
Th e primitive uncovered form and the advanced covered pleopodal lungs (including 
mono- and polyspiracular ones) are present. 

 Th e morphological development is in close correlation with the ecological steps of 
colonization of drier and drier habitats.  

   Figure 10 . (A) First and second pleopodite exopodite with lungs (Pl-ex 1 and Pl-ex 2, respectively) in 
 Porcellio scaber , ventral view (scale bar = 1 mm; covered, monospiracular lung type). (B) Close-up of (A) 
(50 μm). (C) Perispiracular area and spiracles of a polyspiracular lung type in  Armadillidium vulgare  
(200 μm). (D) Spiracle (S) and PSA in a monospiracular type lung, such as  P. scaber  (25 μm). (E) Close-
ups of spiracles of  A. versicolor  and (F) of  A. nasatum  (both scale bars = 50 μm; covered, polyspiracular lung 
types).    
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  Th e marsupium  

 Brood care is widespread in crustaceans but the temporally existing marsupium appears 
only in the superorder Peracarida (e.g. isopods, amphipods, and other shrimp-like ani-
mals). Th e marsupium originally evolved for the mechanical protection of eggs and 
developing embryos under marine conditions. While in aquatic forms, the marsupium 
protects the eggs, under land conditions it has evolved into a progressively closer brood 
pouch. Th e brood pouch is “not just a simple container, but protects eggs against desic-
cation and microbes, ensures ‘sea conditions’ – aquatic milieu, fl uid (water) and oxy-
gen and allows females to remove their brood from dangerous places and carry them 
into favorable zones (e.g. thermal optima for embryogenesis)” (Linsenmair,  1989 ). Th is 
sexual female character is the speciality of gravid females. Th ey carry their fertilized 
eggs on their ventral side in this brood pouch ( Figure 8A , C-E) and habitually look for 
places with optimal temperature and humidity conditions for embryogenesis 

  Figure 11.     Light microscopy cross sections of the lung of  Armadillidium vulgare . Th e perispiracular 
elements (PSA) follow the major branches of the ‘lung’ behind the spiraculum (S). (Photos taken by 
D. Csonka) (Scale bars = 100 μm).    
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(Dangerfi eld and Hassall,  1994 ; Hassall and Tuck,  2007 ). Eggs develop into embryos 
and mancas or post-larval juveniles in peracarid crustaceans, regardless of the environ-
mental water supply. 

 Terrestrial isopods exhibit extensive parental care providing protection and nutrition 
for developing progeny under marsupial conditions. Ovigerous females show a lower 
ingestion rate, lower capacity for energy aquisition (Lardies et al.,  2004a ). 

 Duration of marsupial development is infl uenced by light and temperature and has 
a great plasticity depending on weather conditions and environmental stresses (Hornung 
and Warburg,  1993 ,  1994 ). Both increased light and/or temperature accelerated oocyte 
maturation, appearance of brood pouch, shortened duration in egg, embryo, and 
manca development in  Porcellio fi culneus  Budde-Lund, 1885(Hornung and Warburg, 
 1993 ). Oocyte or egg resorption as well as embryo or manca abortion signals the cost 
of accelerated development (Hornung and Warburg,  1994 ) resulting in fewer off spring. 
Increased locomotory activity as well as physical stress has the same eff ects: reduced 
fecundity and shortened duration in marsupial development (Hornung and Warburg, 
 1993 ; Lardies et al.,  2004a ).  

  Structure of the marsupium.    In semi-terrestrial and terrestrial isopods, the marsupium 
evolves into a partly or totally closed brood pouch and it is a key component of 
terrestrial adaptation. Some time after fertilization, isopod females undergo a parturial 
molt and develop oostegites on the 2nd-5th thoracic segments ( Figure 8A , C-E). 
Within the marsupium, we can recognize the cotyledons, hanging from the venter and 
penetrating among developing eggs ( Figure 8C ). Th e chamber of the brood pouch is 
fi lled with marsupial fl uid.  

  Oostegites.   Trevianus and Trevianus (1816, cited by Hoese,  1984 ) fi rst described the 
structure of this brood-pouch. Th e oostegites are leaf like, overlapping appendages, 
basally fused with the pereomeres. Th ey project medially from the coxae of the anterior 
pereopods. Five pairs of oostegites form the marsupium, which is tightly sealed 
ventrally, and laterally ( Figure 8C , D; further details and illustrations in Hoese,  1984 ; 
Hoese and Janssen,  1989 ). 

 Th e oostegites are formed under the control of an ovarian hormone during vitello-
genesis. An extract of vitellogenic ovaries induced oostegite development in ovariect-
omized females (Suzuki and Yamasaki,  1989 ). In  Porcellio dilatatus  Brandt, 1833, 
fresh or accumulated sperm induces their formation (Loyola e Silva and Coraiola, 
1999).  Ligia oceanica  (Linnaeus, 1767) develops oostegites during maturation and 
keeps them throughout its whole life, which is unusual among isopods (Willows, 
 1984 ). Th e outer wall of oostegites possesses a rather thick and impermeable cuticle 
that prevents water loss from the marsupium and thereby avoids desiccation (Hoese 
and Janssen,  1989 ).  

  Cotyledons.   Cotyledons are fi ngerlike extensions of the intersegmental membrane of 
the 2nd-5th thoracic segments ( Figure 8C ). Th ey appear in the marsupium of gravid 
females after parturial molt and have an excretory function. Th eir cuticle is extremely 
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thin. Cotyledons supply the eggs, embryos and mancas with water, oxygen and nutritive 
fl uids (Hoese and Jansen, 1989; Lewis,  1991 ). In  Porcellio olivieri  (Audouin, 1826), a 
fossorial desert species, a cotyledon (Warburg and Rosenberg,  1996 ; see fi gures therein) 
connects each egg. Aquatic forms and the ancient, supralittoral, amphibian species 
(e.g. Tylidae, Ligiidae and Trichoniscidae), have no cotyledons, reminiscing of ancestral 
marine species (Lewis,  1991 ). 

 Cotyledons vary in shape and size with species, and with the age of the brood, grow-
ing in length, thickening with embryo growth and shrinking before manca release. 
Th eir length may also be related to the characteristic humidity of the species’ habitat 
(Hoese and Janssen,  1989 ). Cotyledons occur singly or in groups of 2-3 along the 
ridges of the thoracic membrane. Th e shape of these cotyledons might be single or 
divided into branches (Hoese,  1984 ; Hoese et Janssen, 1989; Lewis,  1991 ). Th ey are 
usually located in three areas of the body: at mid-line and on each side towards the 
lateral margin of the marsupium (Lewis,  1991 ). Th e arrangement of the cotyledons 
varies with the family or subfamily oniscids. Ridges in some cases (e.g.  Porcellio scaber ) 
can enlarge their surface (Hoese,  1984 ). Th e number of cotyledons ranges widely 
within the Oniscidea; this might be correlated with the aridity of habitats (Hoese and 
Janssen  1989 ; Lewis,  1991 ). Lewis ( 1991 ) studied over 60 species of Oniscidea belong-
ing to 20 families and found between 4 and 28 cotyledons per individual; a higher 
cotyledon number was found in species living in increasingly arid habitats and more 
inferred derived species. Species with the highest number of cotyledons belong to the 
most advanced members in the Armadillidae that are found mainly in arid regions 
(Lewis,  1991 ).  

  Marsupial fl uid  .  Eggs of terrestrial isopods undergo development in the female’s 
brood-pouch. Th ere, they are surrounded by marsupial fuid excreted by the cotyledons. 
Th is fl uid  contains nutritive components essential for embryogenesis, such as oxygen, 
and provides protection against desiccation, as well as bacterial infection (Hoese  1984 ; 
Hoese and Janssen,  1989 ; Linsenmair,  1989 ). During marsupial development, the 
off springs also need calcium ions (Ca +2 ) for cuticle mineralization. Ouyang and Wright 
( 2005 ) have found that the total calcium increased 17-fold in  Armadillidium vulgare  
(Latreille, 1804) during embryogenesis. Th ey measured a further 35-fold increase in 
calcium during the manca stage while they drink and ingest marsupial fl uid. 

 All development stages developing (eggs, embryos and mancas; detailed des-
criptions in Surbida and Wright,  2001 ) face physiological stress during marsupial 
development -such as potential desiccation, high ammonia concentrations and changes 
in osmotic concentrations. Surbida and Wright ( 2001 ) studied osmotic conditions, 
possible osmoregulation in the marsupium and osmotic tolerance, osmoregulatory 
capacity of marsupial juvenile stages in  A. vulgare  fi nding that marsupial forms have a 
wide tolerance and physiological adaptability to land conditions.  

  Types of terrestrial marsupium  .  Besides the aquatic type, the land colonizing 
semiterrestrial and terrestrial isopods (Oniscidea) evolved two main types of marsupium: 
the amphibian type and the terrestrial type. Th ese are –depending on  evolutionary 
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stages and correspondence with habitats– the amphibian and the real terrestrial brood 
pouches. Th ese marsupia diff er in structure (Hoese,  1984 ; Hoese and Janssen,  1989  
illustrate the structures).  

     Th e amphibian type marsupium (basic type in species of  Ligia ) is similar to that in 
aquatic species: open at both ends, anteriorly and posteriorly, and water –taken up by 
the water conducting system– can pass slowly through the brood pouch on a caudal to 
apical direction. Th is type of brood pouch is characteristic of phylogenetically more 
ancient species, living under extremely wet conditions (Hoese,  1984 ; Hoese and 
Janssen,  1989 ).  

  Th e terrestrial type of marsupium ( Figures 8A , C, E), is the inferred most advanced 
type of marsupium and it is characteristic of the Crinocheta or ‘higher’ Oniscideans. 
Th ere is no connection between the water conducting system and the marsupium 
being completely enclosed. Th e marsupium contains a nutritive fl uid with mucus and 
blood cells secreted by the cotyledons. Th e terrestrial type of marsupium can be 
regarded as an extension of the body cavity or a kind of uterus (Hoese,  1984 ). Th ere is 
no exchange of fl uids ( Porcellio  type water-conducting system; no capillary action). 

 A special form of terrestrial marsupium was described by Warburg and Rosenberg 
( 1996 ) using SEM and TEM. It raises the possibility of a ‘sac’ type marsupial structure 
in  Armadillo offi  cinalis  Dumeril, 1816 and  Schizidium tiberianum  Verhoeff , 1923. 
Eggs, embryos and mancas are grouped into monolayered sacs suspended by a chord 
from the ventral integument of the female’s marsupium. No cotyledon-like structure 
could be seen, although the structure of sac-epithelium showed similarities with 
cotyledons.   

  Behavioral and ecological adaptations  

 A wide range of behavioral adaptations enables isopods to live on land. Th eir behavior 
is in response to environmental factors such as light, humidity, temperature and chem-
ical stimuli. Intrahabitat behavior, alterations in microhabitat use, resource utilization, 
breeding phenology, sheltering strategy and ecomorphological diff erences provide ways 
to avoid competition and support coexistence for sympatric woodlice populations 
(Schmalfuss,  1984 ; Zimmer and Brauckmann,  1997 ; Zimmer and Kautz,  1997 ; 
Zimmer,  2003 ). 

  Dispersion, surface activity  

 Most surface-active terrestrial isopods are typically nocturnal (e.g. Tuf and Jeřábková, 
 2008 ), and exhibit seasonal rhythms that follow changes in key environmental factors. 
Th ese changes result in seasonal changes in surface activity and dispersion patterns 
(mainly clumped;  Figure 12 ; Hornung  1989 ,  1991 ; Hornung and Warburg,  1995 , 
 1996 ; Farkas,  1998 ). Th e presence of suitable humidity conditions is critical and has a 
basic role in determining tolerance ranges at a habitat and microhabitat scale. Humidity 
can be more important than any other environmental conditions or resources – such 
as food, temperature, light or oxygen support (Heeley,  1941 ). Dispersal and migration 
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are critical elements of the behavior of individuals and populations in response to 
changing environmental conditions, such as e.g. seasonal dynamics in favourable habi-
tat patches or, on a greater scale, in response to habitat change or loss. Dispersal might 
be determined by higher quality food patches (Hassall et al.,  1992 ; Hassall,  1996 ) 
under humid conditions, or for higher humidity shelter sites (Hornung,  1989 ,  1991 ) in 
habitats with extreme seasonality. A special activity pattern is shown by desert-dwelling 
isopods. Detailed studies of  Hemilepistus reaumuri  proved that the active period of the 
population is determined by their annual rhythm and phenophase. Individuals main-
tain their heat and water exchange within their physiological  tolerance limits by their 
diurnal activity (Shachak et al.,  1979 ; Nashri-Ammar and Morgan, 2005).  

 Sheltering 

 To avoid desiccation, isopods shelter, depending on species-specifi c tolerance, humid-
ity and time of the day (Hassall and Tuck,  2007 ). Shelter site use can be seasonal 

  Figure 12.     Aggregating isopods; (A)  Ligia italica  (life size 12 mm); (B)  Armadillo offi  cinalis  (19 mm).    
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and/or sex-dependent. Males are more active early in the season during mating while 
soliciting receptive females. Later in the season, gravid females are looking for shelter 
sites that are optimal for incubation, decreasing the overall cost of reproduction 
(Dangerfi eld and Hassall,  1994 ; Hornung et al.,  2009 ,  2010 ). 

 Above the general habits, there are special cases, such as troglobitic, troglophilic 
forms or desert dwelling species. Caves are real ecological refuges for such hygrophilous 
invertebrates as terrestrial isopods. Around 300 species of terrestrial isopods are troglo-
biotic and additionally many others are troglophilic (Taiti,  2004 ). Numerous species 
of terrestrial woodlice are adapted to hypogeian and endogeian habitats (Manicastri 
and Argano,  1989 ). 

 Probably the most amazing example of adaptation and tolerance in the Oniscidea is 
the genus  Hemilepistus  that inhabits loess deserts.  Hemilepistus reaumuri  ( Figure 13R ) 
is the best-known species that has adapted to these harsh conditions with its monoga-
mous, subsocial behavior, ‘family life’, diurnal activity, and semelparous reproduction 
strategy (Linsenmair,  1985 ,  1987 ;  2008 ; Shachak,  1980 ; Shachak and Newton,  1985 ; 
Warburg,  1992 ; Nashri-Ammar and Morgan, 2005). Th is animal emerges at the end 
of the Mediterranean winter and is active on the surface from the beginning of spring 
to autumn. During the heat of the day, it remains in its burrow, but it is active above 
ground in the morning and evening (Nasri-Ammar and Morgan,  2005 ).  Hemilepistus  
shows prolonged brood care, investing higher costs in reproduction and gaining higher 
survival of progeny under the extreme desert conditions (Linsenmair,  2008 ). In an 
experiment on the settling behavior of  H. reaumuri , Baker ( 2005 ) has shown that 
specimens experiencing poor, degraded habitat conditions became less selective and 
settled in poor quality areas while those from good quality habitat patches did not 
disperse in spite of overcrowding.  

  Conglobation, aggregation 

 Conglobating isopods (’pill bugs’) can infl uence water balance and prevent predation 
by rolling-up ( Figure 13J -L). Water loss rate and CO 2  release were decreased signifi -
cantly (by about 35% and 37%, respectively) by this behavior, depending on relative 
humidity (Smigel and Gibbs,  2008 ). Non-conglobating forms may have the advantage 
of eff ective locomotory activity to avoid desiccation and for fi nding suitable micro-
habitat as was shown with  Porcellio laevis  (Dailey et al.,  2009 ).  

 Th e spatial pattern of isopod distribution at the habitat scale proved to be aggre-
gated in most ecological studies (Hornung,  1989 ,  1991 ; Hornung and Warburg  1996 ; 
Farkas,  1998 ). Th is clumping behavior may have a temporal pattern in seasonal envi-
ronments and correlates with above ground humidity conditions. Aggregation is an 
adaptive behavior ( Figure 12 ) against desiccation and it correlates intraspecifi cally with 
latitude (Caubet et al.,  2008 ): southern populations show a higher level of aggregation. 
Aggregation may also be a stimulating trigger for reproduction in females, speeding up 
their vitellogenesis (Caubet et al.,  1998 ) and accelerating body growth (Takeda,  1980 ). 
An aggregation pheromone is secreted in the mid- and/or hindgut and it is excreted 
with the faeces (Takeda,  1980 ).  
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  Food choice, feeding strategy 

 Isopods are saprophagous invertebrates important in plant litter decomposition. Th eir 
function has a key role in ecosystems and is strongly infl uenced by environmental fac-
tors, including climate and so, thus by global climatic changes (David and Handa, 
 2010 ). Th ey may have a key regulatory function in the decomposition of dead plant 
material in certain habitat types (e.g. arid regions of North Africa and Asia – Shachak 
and Yair,  1984 ; Linsenmair,  2008 ; tropical and temperate ecosystems – David and 
Handa,  2010 ). Terrestrial life also requires adaptation also to the quality of available 
food sources. Evolution of behavioral adaptations includes food source choice and 
feeding strategies. 

 Second antennae of terrestrial isopods help not only orientation but function as 
gustatory organs in food localization. In case of loss of the second antennae, the minute 
fi rst antennae ( Figure 5 ) substitute them by using their aestetascs, or chemoreceptors 
(Schmalfuss,  1998 ). Th e odor of metabolites emitted by food colonizing microbiota 
(Zimmer et al.,  1996 ) directs the food choices of isopods. Microbes produce extracel-
lular enzymes and/or trace nutrients, fi rst of all essential amino acids (Ullrich and 
Storch,  1991 ). Isopods use exo-enzymes gained from consumed microbita for diges-
tion of plant material. Kostanjšek et al., ( 2010 ) found the fi rst evidence for cellulose 
degrading endogenous enzymes in peracarid crustaceans, namely in  Porcellio scaber . 
Enzyme activity was shown in hepatopancreatic extract. 

 Zimmer ( 2002 ) reviewed knowledge of terrestrial isopod nutrition from an evolu-
tionary ecological view. Food quality infl uenced food choice in the laboratory experi-
ments of Szlavecz and Majorana ( 1991 ). Nitrogen rich leaves were preferred by all 
investigated species, either cosmopolitans ( Porcellio scaber  and  Armadillidium vulgare ) 
or more restricted, central European species ( Protracheoniscus amoenus  (now  P. politus ) 
and  A. zenckeri ). Dicotyledons mean high quality food that is preferred (Rushton and 
Hassall,  1987 ). Increasing patchiness of high quality food distribution and isopod 
abundance changes foraging behavior of individuals. At high density, woodlice spend 
more time searching for food and spend more time on low quality food (Hassall et al., 
 2001 ). Food choice and consumption are often used as endpoints of toxicological tests. 
Zidar et al. ( 2003 ,  2005 ) found on  Oniscus asellus  that food quality is refl ected in the 
behavior of woodlice. Animals avoided both Cadmium contaminated and sterilized 
food in the presence of uncontaminated or molded food. 

  Figure 13.     Examples of diff erent eco-morphological types (Schmalfuss,  1984 ). ‘Creepers’: 
(A)  Haplophthalmus danicus  Budde-Lund, 1880 (size 2.5-4 mm), and (B)  Androniscus dentiger  Verhoeff , 
1908 (7-8 mm); ‘Runners’: (C)  Hyloniscus riparius  (C. Koch, 1838) (4-6 mm), (D)  Porcellionides pruino-
sus , (E)  Protracheoniscus politus ; ‘Clingers’ (F)  Porcellio dilatatus  (12-15 mm), (G)  Trachelipus ratzeburgii  
(Brandt, 1833) (12-15 mm), (H)  Porcellio scaber  (14-18 mm), and (I)  P. spinicornis  Say, 1818 (12-15 mm); 
‘Rollers’: (J)  Armadillidium vulgare , (K)  A. nasatum  Budde-Lund, 1885 (13 mm), (L)  A. versicolor  
Stein, 1859 (14 mm), and (M)  Cylisticus convexus  (De Geer, 1778) (12-14 mm); ‘Non-conformists’: 
(N)  Platyarthrus hoff mannseggii  (2-4.5 mm), (O)  Buddelundiella cataractae  Verhoeff , 1930 (2 mm; cour-
tesy of F. Vilisics), (P)  Trichorchina tomentosa  (Budde-Lund, 1893) (3.5-4 mm), and (R)  Hemilepistus 
reaumuri  (‘true digger’; 10-19 mm).    
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 Faeces consumption (allo-, autocoprophagy) is a general phenomenon in terrestrial 
isopods although the interpretation of its function is inconsistent (Hassall and Rushton, 
 1982 ; Wieser,  1984 ; Ullrich and Storch,  1991 ). In default of coprophagy, survival, 
body weight increase might be negatively infl uenced. Th at might be due to shortage of 
microbiota reconsumed. Th e extent of faeces eating is in correlation with food quality 
(Hassall and Rushton,  1982 ). A previous hypothesis of Wieser ( 1966 ,  1984 ) presumes 
copper regain as the function of coprophagy. 

 Hassall and Rushton ( 1984 ) discussed the adaptive signifi cance of selective feeding. 
Food quality may play a crucial role in population dynamics of terrestrial isopod 
assemblages.  

  Life history strategy 

 Phenotypic plasticity in life history traits is an adaptive response to environmental 
conditions (photoperiod, temperature). Timing of breeding (about 2 days time lag 
increase per degree of latitude) in  Armadillidium vulgare  (Souty-Grosset et al.,  1988 ) 
or increase in reproductive output and off spring size in  Porcellio laevis  Latreille, 1804 
(Lardies and Bozonovic,  2008 ) with higher latitude.  Ligia exotica  Roux, 1828  produced 
larger off spring in inland population under unpredictive aridity conditions than living 
in littoral zone under constant humidity (Tsai and Dai,  2001 ). Th ere is a clear trade-off  
between off spring number and size. Most terrestrial isopods show extensive parental 
care contributing to increased fi tness of their off spring. Larger juveniles favor coloniza-
tion and enables invasion from littoral to inland habitats. Diet quality, high protein 
content of food resulted in a signifi cant increase in off spring number and decrease in 
off spring size in  Porcellio laevis  (Lardies et al.,  2004b ). 

 Sutton et al. ( 1984 ) divided the life history characteristics of terrestrial isopods into 
steno- and euridynamic types, more or less similar to r-K strategies. Th e observed life 
history traits are in close relationship to the eco-morphological strategies suggested by 
Schmalfuss ( 1984 ) ( Table 1  ). Soil dwelling (’creeper’) species belong to stenodynamic 
ones (‘K’ strategy) while surface-active species (‘runners’, ‘clingers’, ‘rollers’) belong 
mainly to the eurydynamic (‘r’ strategy) species group. All these variation of strategies 
occur also among cave-living species (Taiti,  2004 ). Additionally, troglobiotic species 
show the characteristic adaptive traits of troglobiotic invertebrates, such as reduction 
or shortage of eyes and pigmentation, long appendages, thin cuticle, specialization of 
sensory organs, loss of rythmicity, reduced fertility, and low number of off spring 
(Manicastri and Argano,  1989 ).   

  Future directions 

 Th e diverse group of terrestrial isopods off ers an excellent opportunity to study the 
diversity in land adaptations, morphologically, physiologically and ecologically. 
Specimens of several species can easily be reared under laboratory conditions and used 
as experimental models. 

 A series of research questions can be raised covering a wide range of biological disci-
plines (Hornung et al.,  1992 ). Most of the questions were grouped by subdisciplines 
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and published as an outcome of the plenary discussion at the 6th Symposium of 
Isopodologists (Hassall et al.,  2005 ). Th e topics range from molecular and physiologi-
cal questions to ecological and biogeographical ones. Th e issues concern life history 
and reproductive strategies, plasticity at the individual level, such as pair choice, 
number of successive broods, reproductive investment of specimens, etc. In addition, 
the problem of correspondence between ecological tolerance, adaptive morphological 
characters and the environmental conditions of species and their distribution on 
regional and habitat/microhabitat level are waiting for further elucidation. Th e correla-
tion between ecomorphological features and environmental tolerance/habitat require-
ments in determining geographical distribution as well as life history traits and their 
association to successful establishment, distribution, especially in the case of invasive 
species, needs to be further addressed. 

 In the last decade, new research trends in isopodology have also emerged. A more 
functional approach in ecological investigations is needed, such as studies on the sig-
nifi cance and mechanisms of population interactions within a decomposing system; 
the effi  ciency of their contribution to ecosystem services also need further investiga-
tions: the importance of species richness, functional diversity and redundancy in 
decomposing subsystems (Heemsbergen et al.,  2004 ). Isopods also became favorite 
models for ecotoxicological studies: e.g. investigating the eff ects of heavy metals 
(Hopkin, 1993; Drobne,  1997 ; Vijver et al.,  2005 ), insecticides (e.g. Drobne et al., 
 2008 ; Santos et al., 2010), endocrine disruptors (e.g. Lemos et al.,  2009 ;  2010 ), or gen-
eral methodological problems (Drobne and Hopkin,  1994 ; Loureiro et al.,  2005b ). 

 In addition, the increasing global problem of urbanization, the functional role of 
alien species, and the homogenization of the urban fauna also need urgent research 
(Magura et al.,  2008a ,  b ; Pouyat et al.,  2008 ; Vilisics and Hornung,  2009 ).   
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