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Abstract

Background: Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central
Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a
very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from
122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition,
we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically
dynamic region.

Methodology/Principal Findings: We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA).
We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general,
group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep
mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the
northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to
the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to
the southernmost portion of mainland.

Conclusions/Significance: Our results shed light on the phylogenetic relationships of Ligia populations in the study area.
This study probably represents the finest-scale phylogeographic examination for any organism to date in this region.
Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of
Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among
phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns
of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important
biogeographic region.
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Introduction

Organisms restricted to specific patchy habitats and with

extremely low vagility represent promising models for biodiversity

and phylogeographic studies. Genetic characterization of their

populations can reveal unexpected levels of previously unknown

biodiversity [e.g., 1,2,3]. Furthermore, their phylogeographic

patterns may offer clues to past geological and environmental

events, which can improve our understanding on the biogeo-

graphic history of a region [e.g., 4,5–7]. Coastal isopods of the

genus Ligia exemplify an organism with an apparently very limited

vagility and high restriction to a patchy habitat, yet wide

geographic distribution. Thus, they have the potential for

revealing high levels of cryptic biodiversity and for serving as

biogeographic indicators.

Ligia is grouped within the Oniscidea, a group that includes all

terrestrial isopods, but evolved from a marine ancestor [8]. Ligia

has a worldwide distribution and currently includes over 30

nominal species, most of which are halophilic forms occurring in

the supralittoral zone of rocky shores worldwide [9,10]. However,

approximately seven species are terrestrial and occur in montane

habitats of tropical regions [11]. Ligia exhibits morphological,

physiological and behavioral characteristics that are intermediate

between ancestral marine and fully terrestrial isopods [12].

Coastal Ligia, also known as rock lice or sea slaters, are found

in a very narrow vertical range of the rocky intertidal

supralittoral. Low desiccation resistance and a primarily algal

detritus diet constrain them to the dry and splash zones of the

upper rocky intertidal; where they can take up water from

droplets and puddles by capillarity and from water vapor directly
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from the air, and hide under rocks and in crevices to minimize

water loss and hide from predators [12]. They are well adapted

for terrestrial locomotion on rocky beaches, but not on sandy

beaches, where the lack of shelter also makes them more

vulnerable to predators and desiccation. Although they retain the

ancestral ability for underwater gas exchange, they actively avoid

entering the water, except when escaping from predators or by

accidental wave dislodgement. Underwater locomotion is used to

regain the shore after such events. However, the potential for

active long-distance dispersal and predator avoidance underwa-

ter is extremely limited [13]. Their long-distance dispersal

capabilities are further limited by the fact that they are direct

developers (i.e., lack a planktonic larval stage). Females carry tens

of eggs in a thoracic pouch or marsupium, in which offspring

develop from fertilization to a juvenile stage [8]. Adults range in

size from 2–8 cm. Because of the above characteristics, Ligia

isopods appear to be highly constrained throughout their life

cycle to the same rocky beach, since they do not actively disperse

in the water at any stage, and large areas of sandy beaches,

estuaries, and cliffs, separating discrete rocky beaches may

constitute effective dispersal barriers. Phylogeographic studies of

Ligia isopods in different parts of the world have revealed high

levels of allopatric differentiation, consistent with expectations

from their life history [11,14].

Only one Ligia species, Ligia occidentalis, is usually recognized

between southern California and central Mexico, including the

Gulf of California; and in central California, L. occidentalis overlaps

with L. pallasi [15]. However, some authors suggest the possibility

of multiple Ligia species in southern California and the Gulf of

California [16,17]. Rocky intertidal communities of this region are

extremely biodiverse [17–19]; and given the biology of Ligia,

phylogeographic studies of this isopod are likely to reveal high

levels of cryptic biodiversity. Furthermore, Ligia has a high

potential for preserving in its genealogy, signatures of past

vicariant events in this tectonically dynamic region [20]. Thus,

phylogeographic studies of Ligia in California and western Mexico

may contribute to understanding highly controversial aspects of

the geological history of this region.

For example, the origin of the Gulf of California and the Baja

Peninsula has been subject to different interpretations [e.g., 21,22–

27]. Phylogeographic studies of this region, however, have

traditionally followed a geological framework described in Riddle

et al. [22] (Figure 1a). Accordingly, four main vicariant events

occurred during the history of this region: (1) A small peninsula

separated the southern portion of the Gulf from the Pacific Ocean

,5.5 million years ago (Ma), when the Gulf began to form, and a

subsequent northern extension separated the rest of the peninsula

from mainland ,4 Ma [23]; (2) northward transgressions of the

Gulf into low-lying deserts in southern California and Arizona

occurred, and isolated the whole Baja from the mainland ,3 Ma

[21]; (3) a trans-peninsular seaway isolated the Baja Cape region

(i.e., the southern tip of Baja) from the rest of Baja ,3 Ma [21,23];

and (4) a trans-peninsular seaway across the mid-peninsula isolated

northern and southern peninsular biotas ,1 Ma [28]. Figure 1b

shows the expected phylogeny for an organism depicting

signatures of the above vicariant events. However, alternative

geological hypotheses exist, which consider a much earlier origin

of the Gulf and that its formation proceeded from north to south

[25,26,29] (addressed in Discussion section).

Herein, we analyzed the phylogeographic patterns of Ligia from

central California to central Mexico. We discover remarkable

levels of cryptic genetic diversity in this isopod and discuss the

phylogeographic patterns in light of the vicariant hypotheses that

have been proposed for this region.

Materials and Methods

Samples were collected during 2007–2009 by hand on rocky

intertidal shores from 122 localities distributed from central

California to central Mexico (Fig. 2; Supplemental Table S1). A

preliminary examination of DNA sequences of the mitochondrial

Cytochrome Oxidase I gene (COI) for a subset of .40 localities

from the Gulf of California and Baja Pacific that included multiple

individuals per locality, revealed that most localities do not share

haplotypes (Hurtado et al. unpublished). The only instances of

haplotype sharing occurred among a few neighboring localities

that probably represent the same population (results not shown).

Thus, to understand phylogeographic patterns at our geographic

scale of interest, we focused on maximizing the number of

localities and included one individual per locality.

We extracted DNA from leg segments using the DNEasy kit

(Qiagen, Inc., Valencia, CA). For all individuals, we performed

PCR amplification of two mitochondrial gene fragments using

published primers and PCR conditions: a 710-bp region of COI

[30]; and, a ,520-bp region of the mitochondrial 16S rDNA gene

[primers 16Sar/16Sbr; 31]. PCR products were cleaned with

Exonuclease and Shrimp Alkaline Phosphatase and cycle

sequenced with the BigDyeH Terminator v3.1 Cycle Sequencing

Kit (Applied BioSystems, Foster City, CA). Sequenced products

were cleaned with SephadexH G-50 (Sigma-Aldrich, St. Louis,

MO) and run on a 3100 Genetic Analyzer. We used Sequencher

4.8 (Gene Codes, Ann Arbor, MI) for sequence editing and primer

removal. None of the COI sequences had premature stop codons

or frame shifts, suggesting that they are not pseudogenes. The 16S

rDNA sequences were aligned with Clustal62.0 [32] and edited

manually in MacClade 4.08 [33]. Regions for which homology

could not be confidently established were excluded from the

phylogenetic analyses (see Table 1 and alignment in Supporting

Information Dataset S1).

For the phylogenetic analyses we also included sequences from

all available species of Ligia in GenBank that had both genes and

used as outgroup Ligidum hypnorum, a genus within the same family

of Ligia, Ligiidae, to root the inferred phylogenetic trees. Ligiidae

has only three genera [15]: Ligia, Ligidium, and Ligidioides (a

monotypic genus from Australia). We used jModeltest v0.1.1 [34]

to determine the most appropriate model of DNA substitution

among 88 candidate models on a fixed BioNJ-JC tree, under the

Akaike Information Criterion (AIC), corrected AIC(c), and

Bayesian Information Criterion (BIC). For the ML analyses we

used two different programs: (a) RaxML 7.0.4 [35–37] with two

different models and number of bootstrap replicates determined

automatically, as implemented in the CIPRES portal http://www.

phylo.org/; and; (b) GARLI v.0.96beta8 [38] also implemented in

CIPRES, with at least two different models and at least 100

bootstrap replicates. In addition, we conducted Bayesian analyses

using the Parallel version of MrBayes v 3.1.2 [39,40] implement-

ing four runs, with four chains each, for at least 100,000,000

generations sampled every 5000 generations (all other parameters

were default). Appropriate ‘‘burnin’’ (i.e., samples discarded prior

to reaching a stationary posterior distribution) was determined

based on small and stable average standard deviation of the split

frequencies, Potential Scale Reduction Factor close to 1, and

stable posterior probability values (see MrBayes manual).

For the Bayesian and RaxML analyses, we also conducted

phylogenetic analyses with partitioned models in which each gene

was in a different partition (i.e., each data partition assumed the

same model but different parameter values).

To evaluate whether the Ligia sequences examined exhibit

clocklike behavior, we used a Likelihood Ratio Test on the

Pacific Ligia Phylogeography
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likelihood scores obtained with PAUP* [v. 4b10, 41] of the tree in

Figure 3 with and without molecular clock constraints. Degrees of

freedom were calculated as (number of taxa) –2 [42].

Results

All new sequences have been deposited in GenBank under Acc.

Nos. HM569779–HM570001 and our alignment has been

deposited as Supporting Information Dataset S1. We removed

301 16S rDNA characters that could not be confidently aligned

and the last 39 COI characters, which were missing for many taxa.

The final dataset contained 917 characters of which 353 were

parsimony informative (Table 1).

Model selection
The best substitution model according to the AIC was TVM +

G + I, while the best model according to AICc and BIC was

TPM3uf + G + I (see jModeltest manual). These models were

implemented in GARLI analyses, but they are not available in

RaxML and MrBayes. In addition, the weights for these models

were not high, particularly for the AIC and AICc (see Table 1)

indicative of model selection uncertainty. The 99% cumulative

weight interval included the most complex model evaluated (GTR +
G + I). We therefore implemented the GTR + G + I, as well as the

simpler GTR + G in RaxML, MrBayes, and GARLI, because of

potential problems with estimating G + I simultaneously [see

RaxML manual and pages 113–14 in 43].

Phylogenetic results
Our phylogenetic analyses included all of the localities in

Figure 2 as well as samples from all the Ligia spp. with

sequences from both genes available in GenBank. Ligidium

hypnorum, also in the family Ligiidae, was used to root our trees.

Our results recovered a relatively well supported monophyletic

group (Clade I; Fig. 3) that contained all of the Ligia sp. samples

collected between central California and central Mexico, L.

exotica samples from Hawaii and South Carolina, L. perkinsi

(Hawaii), L. hawaiensis (Hawaii), and L. vitiensis (Madagascar), to

the exclusion of samples of L. oceanica (Germany), L. pallasi

(Canada and USA), and L. italica (Italy). Within Clade I, L.

perkinsi, L. hawaiensis, and L. vitiensis appear as a sister clade

(Clade III) to all the remaining samples (Clade II), although

node support values for the reciprocal monophylies of Clades II

and III were highly variable. Within Clade II, five monophy-

letic groups were recovered: central California clade (Clade A;

grey in Figs. 2–3); Baja Pacific-Southern California clade (Clade

BCDE; green, orange, magenta, and turquoise in Figs. 2–3);

Gulf clade (Clade NS; red and blue in Figs. 1–3); Careyes clade

(Clade F; brown in Figs. 2–3); and L. exotica. The relationships

among the five clades within Clade II (i.e., A, BCDE, NS, F,

and L. exotica) were unresolved. Relationships and phylogeo-

graphic patterns within each of these clades (except L. exotica)

are described below.

The central California clade (Clade A; grey; Figs. 2–3) was

comprised of mainland samples from the vicinity of the San

Francisco Bay area and samples collected in the Northern

Channel Islands. These island lineages are mainly located in the

western portion of the Northern Channel Islands (west Santa Rosa

and San Miguel), with the exception of Orizaba (A4) in Santa

Cruz Island. Very shallow divergences were observed within this

clade (maximum Kimura-2-parameter distances were 0.37% and

1.55%; for 16S rDNA and COI, respectively; Table S2).

Figure 1. Vicariant hypothesis for the origin of the Gulf of California and Baja Peninsula described in Riddle [22]. A. Sequence of
geological events. B. Expected phylogeny of an organism showing signatures of these vicariant events [modified from 22].
doi:10.1371/journal.pone.0011633.g001
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Figure 2. Sampled localities. Color and shape correspond to clades in Figs. 3 and 4. A1- Princeton; A2-Coyote Point; A3-Harris Point; A4- Orizaba;
A5-NW Talcott; A6-China Point; A7-Otter Harbor; A8-Fossil Reef; B1-Industrial Area; B2-Little Harbor; B3-Ithsmus Cove; B4-Descanso; B5-Long Beach;
B6-San Diego; B7-Refugio; B8-Malaga Cove; B9-Cabrillo; C1-San Diego; C2-Corona Ensenada; C3- Ford Point; C4-East Point; C5-Johnsons Lee; C6-Side
Frenchy’s; C7-Sandy Beach; C8-Smugglers Cove; C9-Willows; C10-Fraser Cove; C11-Scorpion; C12-Frenchys; D1-Bufadora Ensenada; D2-San Quintin;
D3-Punta Baja; D4-Arroyo Ancho; D5-Tomatal; E1-Cedros Is. (2 localities); E2-Punta Eugenia; E3- El Chevo, El Queen, and Malarrimo; E4-Tortugas; E5-
Bahı́a Asuncion; E6-San Hipolito; E7-Punta Abreojos; E8-Puerto San Carlos; F1-Vallarta; F2-Careyes; S1-Loreto; S2-Cajete, San Evaristo; S3-San Brunito;
S4-San Cosme; S5-Punta Chivato and Mulege; S6- Bahı́a Concepción: Bahı́a Concepcion N, Punta Sueño, Buenaventura, Requeson, Bahı́a Armenta,
Bahı́a Concepcion S; S7-San Lucas and Santa Rosalia; S8-Bahı́a Kino; S9-San Carlos; S10-Guaymas; S11-La Paz; S12-IslaEspiritu Santo (2 localities) and
Isla Partida; S13-Isla Cerralvo (3 localities); S14-Ensenda de los Muertos and Barriles; S15-Frailes; S16-Cabo San Lucas and El Arco; S17-Barra Potosi; S18-
Ixtapa, Zihuatanejo; S19-Carrizalillo; S20-Manzanillo and Boquita; S21-Punta Mita; S22-Isla Coral; S23-San Blas, Platanitos, and Aticama; S24-Mazatlan
(2 localities); S25-Topolobampo; S26-Cabo Pulmo; S27-San Nicolas; N1-San Bruno; N2-Santa Rosalia; N3-Isla San Pedro Martir; N4-San Francisquito; N5-
Bahı́a de los Angeles; N6-Isla Angel de la Guarda (Viborita); N7-Isla Tiburon (3 localities), Isla Cholludo, Isla Datil; N8-Isla San Esteban; N9-San Rafael;

Pacific Ligia Phylogeography
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The Baja Pacific–Southern California clade (i.e., BCDE)

contained all the other samples collected from California and all

the samples from the Baja Peninsula Pacific side. This clade was

first divided into two groups: a group that contained samples from

Santa Catalina Island and mainland southern California localities

from San Diego to Refugio (‘‘Southern California’’; Clade B;

green; Figs. 2–3); and a group that contained samples from the

Baja Pacific, northern Channel Islands, and San Diego (i.e., Clade

CDE). The CDE clade in turn was divided into two groups (i.e., E

and CD). The first one (Clade E; ‘‘Baja Pacific South’’;

turquoise; Figs. 2–3) contained all of the Baja Peninsula Pacific

localities south of Guerrero Negro Lagoon. The second one (i.e.,

CD; orange + magenta) contained all of the localities on the Baja

Peninsula north of Guerrero Negro, a sample from San Diego, and

several localities from the Northern Channel Islands. Clade CD

was divided into a group that included only localities from the

northern Pacific Baja Peninsula (Clade D; Baja Pacific North;

magenta; Figs. 2–3), and a group that contained mainland

localities from Ensenada (Mexico) and San Diego, and Northern

Channel Islands localities (Clade C; ‘‘California’’; orange;

Figs. 2–3). These island localities are distributed in the eastern

portion of the Northern Channel Islands (Anacapa, Santa Cruz,

and eastern Santa Rosa).

Maximum sequence divergences within each of the B, C, D and

E clades reached 2.22, 0, 0, 2.41%; respectively, for the 16S rDNA

gene (Table S2), whereas they reached 8.60, 2.10, 2.08, 8.77%;

respectively for the COI gene (Table S2, S3, S4, S5). Divergences

among clades B, C, D and, E ranged between 1.02–7.5% for 16S

rDNA and between 7.28–19.6% for COI (Table S2).

The Gulf clade (Clade NS; red and blue; Figs. 2–4); grouped

all the localities that were sampled in the Gulf of California and all

mainland samples collected south of the Gulf, with the exception

of Vallarta and Careyes (brown in Figs. 2–3). The Gulf clade was

divided into two well-supported main lineages: Gulf North clade

(clade N; red; Figs. 2–4) and Gulf South clade (clade S; blue;

Figs. 2–4). Divergences between the Gulf North and Gulf South

clades ranged between 5.32–11.09% for 16S rDNA and between

15.16–26.47% for COI (Table S2). COI divergences among

selected localities/lineages within the Gulf North and Gulf South

clades are shown in Tables S6 and S7; respectively. The Careyes
clade (Clade F; brown) included only the samples from Vallarta

and Careyes.

The Gulf North clade (Clade N; red) included: (1) Baja

samples from San Bruno and Santa Rosalia (in the mid-peninsula),

and all Baja localities sampled north of Santa Rosalia; (2) all Gulf

mainland localities sampled from Puerto Libertad (N16) to the

north; and (3) all samples collected from the central Gulf islands

(Tiburón, Angel de la Guarda, San Esteban, San Pedro Martir, El

Cholludo, Isla Datil; N3 and N7–N8). Within the Gulf North

clade, a well-supported group (red circles; N10–N14; Figs. 2 and 4)

was formed by localities from the upper Gulf between Puerto

Peñasco (mainland), and San Luis Gonzaga (Baja), which was

sister to a well-supported group formed by Puerto Lobos and

Puerto Libertad (red circles; N15–N16). The sister lineage to this

‘‘red circles’’ clade (N10–N16) appears to be Angel de la Guardia

Island (N6), but support for this relationship was variable. The

island localities of Tiburon, El Cholludo and Isla Datil (N7)

formed a well-supported group, whose closest relatives appear to

be San Esteban Island (N8) and San Rafael (a Baja Peninsula

locality; N9). San Francisquito, San Pedro Martir Island, Santa

Rosalia and San Bruno formed a well-supported group (red

squares N1–N4). The relationship of Bahı́a de los Angeles (N5)

with the other lineages was not resolved.

The Gulf South clade (Clade S; blue) included: (1) San Lucas

and Santa Rosalia (S7) and all populations south of San Bruno in

the Baja Gulf; and all mainland populations collected from Kino

(S9) to central Mexico (with the exception of Vallarta and

Careyes). Baja Peninsula localities north of the Cape region (i.e.,

North of La Paz) were grouped into two well supported main

clades: one (blue hexagons) included the localities sampled from

Santa Rosalia and San Lucas to Bahı́a Concepción (S6), excluding

San Bruno; the other (blue stars) included the localities from San

Brunito to El Cajete. Baja Cape region lineages were grouped into

three separate lineages: one that included all the localities from La

Paz and Isla Espiritu Santo (blue diamonds); one that included all

Baja Cape region localities south of La Paz with the exception of

Cabo Pulmo (blue triangles); and one that included Cabo Pulmo

(blue ‘‘X’’; S26). These lineages formed a monophyletic group (i.e.,

‘‘Baja Cape-Southern Mainland’’ clade; Fig. 4) with a clade

comprised of all the mainland localities in the southern Gulf and

those south of the Gulf (blue circles), with the exception of Vallarta

and Careyes. The sister to the ‘‘Baja Cape-Southern Mainland’’

appears to be a clade (blue squares) formed by the central Gulf

mainland localities of Kino, Guaymas, and San Carlos (S9–S10)

and the central Baja locality of San Nicolas (S27).

Discussion

Taxonomic uncertainty and Central California Clade
Our inferred phylogenetic relationships among Ligia isopod

samples from central California to central Mexico show a rather

complex and previously unknown evolutionary history. The high

Table 1. Number of characters per gene that were excluded from and included in the phylogenetic analyses.

Gene
No. excluded
characters

No. of retained
characters

No. of parsimony
informative
characters

Best model AIC
(weight)

Best model AICc
(weight)

Best model BIC
(weight)

16S 301 298 93

COI 39 619 260

Total 340 917 353 TVM+I+G (0.46) TPM3uf+I+G (0.57) TPM3uf+I+G (0.87)

The number of parsimony-informative characters is based on included characters only. Best model selected by jModeltest according to each criterion (AIC, AICc, BIC)
and its corresponding weight.
doi:10.1371/journal.pone.0011633.t001

N10-San Luis Gonzaga; N11-Puertecitos; N12-San Felipe; N13-La Cholla; N14 Puerto Peñasco; N15-Puerto Lobos; N16-Puerto Libertad. * denotes
Guerrero Negro Lagoon; black circle denotes San Ignacio Lagoon.
doi:10.1371/journal.pone.0011633.g002
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Figure 3. Maximum Likelihood tree of Ligia samples from localities in Figure 1 and several outgroups. Obtained by RaxML for the 16S
rDNA and COI genes (model GTR + G), rooted with Ligidium. Taxon IDs and clade colors correspond to Figure 2. Ligia Gulf clade portion of tree is
expanded in Figure 4. Numbers by nodes indicate the corresponding range of node support values obtained for each method: Top-Bayesian
Posterior Probabilities; Middle-GARLI bootstrap support; and Bottom-RaxML bootstrap support. * denotes nodes that received 100% support for all

Pacific Ligia Phylogeography
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degree of sequence divergence among several lineages suggests

that multiple Ligia species exist. Recognized species of Ligia show

COI divergences starting at 14% (L. hawaiensis vs. L. perkinsi; Table

S2). Many of the lineages found in our study area are at least 14%

divergent from their closest relative (Tables S2 and S6–S7),

although smaller divergences may also represent different species.

Accordingly, the taxonomy and systematics of Ligia in this region

need to be revised. Traditionally, with the exception of L. pallasi in

central California, one species has been recognized in this region,

Ligia occidentalis; although some authors also indicate the presence

of L. baudiniana (a species from the Atlantic) and L. exotica (a

cosmopolitan species, but see discussion below) [15,16]. The type

locality of Ligia occidentalis Dana, 1853 is around the San Francisco

area we sampled; thus, our samples from this region likely

correspond to this species. These samples clustered into the

Central California Clade (Clade A; grey), with several samples

from the Northern Channel Islands. The small divergences

observed among the localities within this clade (Table S2) suggest

a recent exchange between the mainland and the islands.

However, this clade is highly divergent from the other main

lineages (Table S2), suggesting they correspond to different species.

The regions between Point Conception and San Francisco and

north of San Francisco need to be explored to determine the

distributional limits of clades A, B, and C.

The four main lineages found in our study area (i.e., clades A,

BCDE, Gulf, and Careyes) are closely related to L. exotica, L.

hawaiensis, L. perkinsi, and L. vitiensis. In contrast, L. pallasi, a coastal

species whose distribution overlaps with our study area (distributed

between Santa Cruz, California, and Alaska), and for which we

included samples from Canada and Washington, USA, is very

distant from the Ligia examined in this study. Ligia exotica has been

considered a single exotic species, commonly found in harbors and

ports around the world, and thus regarded as introduced by ship

traffic in many areas [reviewed in 15]. However, molecular

analyses of samples from different parts of the world also show

deep divergences among lineages, suggesting L. exotica is a complex

of cryptic species (Hurtado et al., unpublished). Similarly, L.

hawaiensis and L. perkinsi, both from the Hawaiian archipelago,

show deep interpopulation genetic divergences, but the phyloge-

netic relationships among populations of the two members have

not been well resolved [11]. To resolve the sister relationships of

Ligia lineages found in our study area, a comprehensive

examination that includes representatives of potential sister

lineages and additional genes is necessary.

Baja Pacific – Southern California (BCDE) Clade
Another deep lineage includes the clades B, C, D, and E. In the

Southern California clade (Clade B; green), mainland localities

from Los Angeles area (B5, B8, B9) to Refugio Beach (B7) formed

a well-supported group. The localities sampled around the Los

Angeles region (i.e., Long Beach, Malaga and Cabrillo) have

identical 16S sequences suggesting recent exchange, which may be

a consequence of the relatively young age of the current rocky

headlands in southern California [1]. This group plus Refugio split

from the rest of the members in the Southern California clade (B),

which includes samples from San Diego and Santa Catalina

Island, suggesting a vicariant event around Los Angeles region

(represented by 6.89–8.04% COI divergence; Table S3). Remark-

ably, interspecific phylogeographic breaks have also been

identified in the Los Angeles region for other intertidal and

coastal animal taxa [44], implying they may share a common

vicariant history in this region. The small divergences (0.9–2.42%

COI; Table S3) observed between Santa Catalina Island localities

(B1–B3) and the mainland (i.e., San Diego B6) may indicate a

recent exchange, consistent with the young age of the island (,1

Mya), which is suggested to have separated from southern

California [45].

Within the California-Baja Pacific North-Baja Pacific South

clade (i.e., CDE clade), a mid-peninsular phylogeographic break

occurs at the Guerrero Negro Lagoon area (i.e., California + Baja

Pacific North vs. Baja Pacific South). Thus, presence of this

Lagoon may be associated with this phylogeographic split.

Remarkably, a mid-peninsular phylogeographic break is also

observed in Ligia lineages along the Baja peninsula inside the Gulf

(i.e., Gulf North vs. Gulf South clades). A seaway may be the cause

of the breaks on both sides of Baja (but see Gulf Clade Discussion).

Divergence of the Baja Pacific North Clade (D; magenta) from

the California Clade ‘‘C’’ (orange) may be associated with one of

the multiple marine incursions that are suggested to have isolated

the peninsula from mainland between 5–14 Ma [reviewed in 46].

Within the California Clade C (orange) the small COI divergences

observed (maximum 2.1%; Tables S2 and S4) among the northern

Channel Island localities and between these and their closest

relatives on the mainland (i.e., C1 and C2), suggest recent

exchange among these localities (similar to the Channel island

populations of the Central California clade A; grey). These islands

appear to have formed ,3 Ma [N. Pinter pers. comm. in 47].

However, Anacapa and San Miguel islands were completely under

water during at least one interglacial episode [45], so Ligia

populations present before would have gone extinct. Santa Rosa

and Santa Cruz islands have been continuously above sea level for

at least the last 500,000 years [45]; but it is possible that they were

inundated before. The four present-day Northern Channel Islands

were all part of a large contiguous land mass ,17,000 years ago,

which is believed to have been connected to the mainland and

facilitated dispersal of terrestrial animals to this island [45]. Based

on the distribution of non-vagile reptiles, it has been also suggested

that the Northern Channel Islands were once connected to

mainland, near present-day Mexico, and were carried farther

north along fault systems [45]. The grouping of these Northern

Channel Islands lineages with samples from San Diego and

Ensenada suggests an origin of the island lineages around the

Mexico-US border. Interestingly, the distribution of the two main

lineages found in the Northern Channel Islands is segregated

geographically: California clade C lineages (orange) in the east;

and Central California clade lineages (grey) in the west, which may

be related to the past history of colonization and fragmentation of

the islands.

Experimental reciprocal crosses provide further evidence for

multiple species of Ligia in California [16]. Crosses between

individuals from Los Angeles and Carpenteria (found between B7

and B8; Fig. 2) produced normal offspring. However, no offspring

were observed in crosses of Carpenteria and San Francisco, which

were found to be highly divergent in our study; as well as between

Carpenteria and the Channel Islands of San Nicolas and San

Clemente, which were not sampled in our study.

Gulf Clade
The Gulf clade is characterized by extremely high genetic

divergences among and within several lineages (north vs. south

methods. Nodes receiving less than 50% support for all methods were collapsed. Nodes with no corresponding support values were of little relevance
or had low support values. {: relationship based on 16S sequence only. San Diego (C1): GenBank Acc. Nos. AF260862 and AF255780.
doi:10.1371/journal.pone.0011633.g003
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Figure 4. Maximum Likelihood tree of Ligia Gulf samples (expansion of the Gulf clade in Figure 3). Taxon IDs, clade colors and shapes
correspond to localities in Figure 2. Numbers by nodes indicate the corresponding range of node support values obtained for each method: Top-
Bayesian Posterior Probabilities; Middle-GARLI bootstrap support; and Bottom-RaxML bootstrap support. * denotes nodes that received 100%
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COI divergences: 15.16–26.47%; within north: up to 25.3%; and

within south: up to 21.55%; Supporting Tables S2 and S6–S7),

suggestive of a long history in the region. Due to the high

allopatric divergences among the lineages within this clade, its

apparently long history in the region, and a broad geographic

distribution in the Gulf and adjacent areas, Ligia has the potential

to have retained in its phylogeographic patterns, signatures of past

vicariant events in this region. However, interpretation of this

pattern is limited by the incomplete and controversial state of

knowledge on the complex geological history of the Gulf of

California and Baja California Peninsula; for which alter-

native and strikingly different hypotheses have been proposed

[e.g., 21,22–27].

The mid-peninsular breaks observed for Ligia at the Pacific (i.e.,

Guerrero Negro area) and Gulf (i.e., Santa Rosalia area) sides of

Baja appear to be consistent with the presence of a seaway,

because such a barrier would likely cause north-south breaks at

both sides of the peninsula for a coastal organism. However, the

mid-peninsular break in the Pacific is shallower than the one

observed in the Gulf, although substitution rate heterogeneity,

which is observed in our dataset (P,2.05610217; d.f. = 130), could

account for the different divergences. Although the break around

Santa Rosalia is consistent with the proposed location for a seaway

opening, the break in the Pacific is ,170 Km north of the

suggested location (black circle; Fig. 2) for a seaway opening in the

Pacific [48]. Therefore, it is unclear whether or not the Pacific and

Gulf mid-peninsular breaks are associated with the same event.

Existence of a mid-peninsular seaway has been a contentious

issue in phylogeographic and geological studies. A ,1 Ma mid-

peninsular seaway was originally proposed to explain a mid-

peninsular divergence of Uta lizards [28], but the same research

group indicates in subsequent papers that this divergence may

represent Late Miocene–Early Pliocene times [24,49,50]. Mid-

peninsular phylogeographic breaks have been reported in multiple

taxa [e.g., 22]; but a broad range of divergences is observed, with

some showing deep [46,49,51], while others shallower phylogeo-

graphic breaks [22]. Riginos [52] suggests that a Plio-Pleistocene

mid-peninsular seaway is the simplest explanation for a concor-

dant genetic division within both terrestrial and marine verte-

brates. However, a comparative phylogeographic analysis using

data from multiple studies concludes that two mid-peninsular

diversification events occurred [53]. In addition, Grismer [54]

indicates that mid-peninsular divergences may be associated with

abrupt habitat and climate changes in central Baja, rather than a

seaway. No geological evidence for a mid-peninsular seaway ,1

Ma exists [24], but geological evidence (albeit controversial)

suggests the existence of a more ancient seaway. Based on

characteristics and distributions of fossil assemblages and marine

deposits, Helenes and Carreño [26] suggest a Miocene seaway

connected the Pacific with a northern proto-Gulf basin (discussed

below) through the central part of Baja. However, Oskin and

Stock [55] consider that a seaway does not necessarily explain the

distribution of Miocene marine deposits in Baja. Nevertheless,

paleomagnetic data indicate the presence of a seaway in Santa

Rosalia ,7 Ma [56].

Regardless of whether or not a seaway was the cause for the

Gulf mid-peninsular break in Ligia, it does not appear to be a ,1

Ma event. The high divergence between Gulf North and Gulf

South clades (COI Mean = 21.68%61.9 SD) suggests a

divergence time older than 1 Ma, probably in the Miocene,

unless very elevated substitution rates occur in Ligia, which is

unlikely. The mutation rate of COI in other marine isopods is

suggested to be 2.5%/My [57]; thus, for this divergence to

represent 1 My, it implies Ligia has a substitution rate ,9 times

higher than that reported for other marine isopods.

Other aspects of the phylogeographic patterns of Ligia are

incongruent with the hypothesis of Riddle [i.e., Fig. 1; 22]. Under

Riddle’s hypothesis, reciprocal monophylies of the mainland vs.

the peninsula (or at least the monophyly of one of them) are

expected. However, within the Gulf, Ligia lineages of southern

Baja are more closely related to mainland lineages (south of

,29uN latitude) than to northern Baja and northern mainland

lineages. Furthermore, Ligia Cape region lineages are more closely

related to southern mainland lineages (south of ,25uN latitude)

than to any other Baja lineages. This is in striking contrast to the

suggestion that the Baja Cape region was the first part of the

peninsula to separate from mainland [22,55]. Dispersal of Ligia

across long stretches of ocean between southern Baja and

mainland may explain these discrepancies. We believe this is

unlikely because if Ligia from the Gulf of California had such

dispersal abilities (i.e., peninsula–mainland distances are

.100 Km in the central Gulf and .190 Km in the mouth), we

would not expect to see the exceptional degree of allopatric

differentiation exhibited. Furthermore, mixing of distant localities

by dispersal across long stretches of ocean would likely have

produced a very random phylogeographic pattern, which, in

general, does not appear to be the case. Nevertheless, such

dispersal cannot be completely ruled out. However, the phylogeo-

graphic patterns of Ligia in the Gulf clade appear to be congruent

with elements of alternative geological hypotheses that consider an

older history for the Gulf, as well as with phylo- and biogeographic

patterns of other taxa.

The existence of an isolated Late-Miocene proto-Gulf basin that

included the northern portion of today’s Gulf and an extensive

area to the north is well-accepted and was proposed since the

1970’s [25,58–61]. Recent evidence suggests that this northern

proto-Gulf is at least 11.61 Ma old [60]. As mentioned above, a

connection between the proto-Gulf and the Pacific appears to have

existed in the central part of the peninsula [25,26,48]. How the

Gulf evolution proceeded from the northern proto-Gulf stage to

the present-day Gulf is unclear [25]. Nevertheless, several studies

suggest that the southern part of Baja separated from mainland

more recently than northern Baja, and that the Cape region was

the last part of Baja to separate from mainland ,4–6 Ma

[25,26,61]. Such sequence of events is consistent with the

phylogeographic patterns of Ligia in the Gulf South clade.

Ledesma-Vásquez [62] proposes that a southern basin formed,

younger (3.5–5.5 Ma) than the northern proto-Gulf, and that the

older northern proto-Gulf joined this southern basin to form the

present-day Gulf; although the exact sequence of events is unclear.

Accordingly, the present-day Gulf attained its current form as a

result of the separation of the Cape region from mainland and the

break of the land barrier separating the two basins. Therefore,

some present-day Gulf taxa, including Ligia, may have colonized

and remained in the Gulf since northern proto-Gulf times. An

early diversification (i.e., during proto-Gulf rather than modern

Gulf times) may have contributed to the high levels of endemism

observed in the northern Gulf [19].

Phylogeographic patterns of other taxa are also suggestive of

colonization and isolation events during proto-Gulf times. Several

support for all methods. Nodes receiving less than 50% support for all methods were collapsed. Nodes with no corresponding support values were of
little relevance or had low support values.
doi:10.1371/journal.pone.0011633.g004
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fish lineages with disjunct distributions in the Pacific coast of Baja

and the northern Gulf (i.e., not found in southern Gulf) show

relatively deep Pacific-northern Gulf divergences. For example,

divergence between Gillichthys mirabilis (with disjunct distribution)

and its sister Gillichthys seta, endemic to the northern Gulf, is

estimated to have occurred 4.6–11.6 Ma [63]. Similarly, Pacific/

Gulf divergences for Leuresthes tenuis, Girella nigricans, and Hypso-

blennius jenkins (other fish taxa with disjunct distributions) at the

mitochondrial control region are 11.6%, 8.5%, and 7.9%,

respectively [64]. According to a molecular clock of 0.85–2%

per million years presumably specific to fish mitochondrial control

region [52], some of the deeper divergences may have occurred

during Miocene times (i.e., proto-Gulf times). Nevertheless, much

shallower Pacific/northern Gulf control region divergences are

reported for other fish taxa [0.6–2.3%, 64] with disjunct

distributions, suggesting that more recent colonization events of

the northern Gulf have also occurred.

As discussed above, our results suggest that Ligia colonized the

Gulf during proto-Gulf times; and that the Cape region was the

last portion of southern Baja to separate from the southern

mainland. Interpretation of the sequence of events that led to the

divergence of the Ligia Gulf clade from its sister lineage in the

Pacific (yet to be identified or extinct), and to the subsequent

divergence of the Gulf North and Gulf South clades is limited by

the incomplete knowledge of the geological history. Below, we

identify three possible vicariant scenarios that could explain the

early history of the Ligia Gulf clade, although geological evidence

for several aspects of these scenarios does not exist.

Scenario 1. The ancestor of the Gulf clade colonized the

proto-Gulf via a Pacific-proto-Gulf connection that was later

disrupted, causing the divergence of the Gulf clade from its sister

lineage. Subsequently, one of the following two scenarios occurred.

Scenario 1A. A mid-peninsular seaway splits the Gulf clade into

north and south. Subsequently the Gulf North clade disperses

along the coast in the northern part of the Gulf, while the Gulf

South clade disperses along the southern coast and through the

existing land bridge between the southern peninsula and the

mainland. The two lineages do not disperse beyond their present-

day limits in the mainland (around Tiburon Island) because rocky

habitats are already occupied by the other lineage. Scenario 1B.
Formation of a land bridge divides the proto-Gulf into two

separate basins (north and south), each with its respective southern

end closed, causing divergence of the Gulf North and Gulf South

Clades.

Scenario 2. The ancestor of the Gulf clade diverged from its

sister in the Pacific prior to entering the proto-Gulf. Subsequently,

the ancestor of the Gulf North clade (rather than the ancestor of

the whole Gulf Clade as in Scenario 1) colonizes the northern

proto-Gulf, while the ancestor of Gulf South Clade remains

outside the proto-Gulf in the Pacific or in a separate southern

basin.

The exact sequence of events following divergence of the Gulf

North and Gulf South clades is also unclear, but several patterns

are worth noting. First, if the Gulf North clade indeed diverged

from the Gulf South clade in a separate northern basin, presence

of the Gulf North clade in the central Gulf (‘‘Midriff’’) islands

sampled, may indicate that these islands formed part of the

southern end of the northern proto-Gulf basin. If Tiburon Island

formed part of the eastern end of the land bridge that separated

the two basins, this would explain the limits of the Gulf North and

Gulf South clades in the mainland (i.e., Puerto Libertad (N16) and

Kino (S9); respectively). Second, within the Gulf South clade, the

sister relationship between San Nicolas (S27; Figs. 2 and 4) in the

peninsula and the Guaymas-Kino-San Carlos clade (S9–10) in the

mainland is consistent with the suggestion of Ledezma-Vásquez et

al. [65] that San Nicolas was attached to the central Gulf mainland

through the land bridge that constituted the northern limit of the

southern basin ,3.3. Ma [62]. Third, deep divergences among

clades of geographically close localities in southern Baja (i.e., blue

hexagons, starts, diamonds, and triangles: Figs. 1 and 3), suggests a

long-standing isolation of these regions. A deep phylogeographic

break in the region north of Loreto such as the one observed in

Ligia (i.e., blue stars vs. hexagons) is reported for a lizard [49].

Fourth, Santa Rosalia is the only locality where members of both,

the Gulf North and Gulf South clades, were found. However, the

haplotypes are identical to the ones found in the nearest localities,

San Lucas (Gulf South) and San Bruno (Gulf North), suggesting a

recent colonization of Santa Rosalia. Finally, shallow divergences

across extensive distances indicate recent colonization/fragmen-

tation processes in Ligia Gulf populations. For example, it is not

surprising that the Upper Gulf region (red circles; Figs. 1 and 3)

exhibits little divergence among localities, since this is the

shallowest part of the Gulf and therefore likely to have been

significantly contracted during the low sea level periods of the

Pleistocene.

Xantusia lizards show similar phylogeographic patterns to the

Ligia Gulf Clade. These lizards share several features with Ligia.

They have a circum-Gulf of California distribution; comprise a

large number of allopatric populations with high levels of genetic

divergence; and, have an extremely patchy distribution, limited

vagility, and close association with particular structural niches

[51]. As in Ligia, northern and southern Baja lineages of Xantusia

cluster in two separate clades that are highly divergent (i.e., ,22%

for Cytb and ND4 mitochondrial genes); possibly representing a

Miocene separation [51]. In addition, Xantusia lineages from

southern Baja, including the Cape region, are more closely related

to lineages in mainland localities that are found inland south of

latitude 25uN (see Fig. 2); and, as in Ligia, their divergence

occurred more recently than the mid-peninsular separation.

Across-ocean dispersal is very unlikely to explain this relationship

in Xantusia, because the southern mainland lineages are found far

inland from the coast.

Other extant and fossil taxa show also a close association

between the Baja Cape region and the southern mainland. These

include many reptilian taxa [23,24], the rocky intertidal snail

Tegula ligulata [66], the lichen Phloeopeccania anemoides [67], and fossil

vertebrates [68].

Many terrestrial vertebrates, however, show a monophyly of the

peninsula with respect to mainland [22,53,69], instead of the

patterns observed in Ligia (i.e., monophyly of southern Baja and

mainland localities south of ,29uN latitude; and monophyly of the

Cape region with southern mainland localities south of ,25uN
latitude). If these patterns in Ligia are indeed the result of

vicariance, why don’t these other taxa show evidence of such

vicariant events? First, it is possible that other taxa colonized the

southern portion of the peninsula from the north after it had

separated from the mainland and had become part of the rest of

the peninsula, rather than prior to the formation of the Gulf’s

southern mouth. Second, most studies do not have the necessary

geographic sampling to test whether the Cape Region is most

closely related to the southern mainland [e.g., 46, 49, 70], because

they lack samples from the southern mainland (i.e., the mainland

region to which the southernmost portion of the peninsula was

presumably attached). This is particularly problematic for

terrestrial taxa restricted to the desert, because the southern

mainland counterpart’s habitat is tropical deciduous forest, thus,

outside their present distribution range. Ligia, on the other hand, is

unlikely to be affected by inland habitat changes as suggested by its
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wide distribution. Perhaps the only phylogeographic studies that

do include samples from the southern mainland are on Xantusia

lizards [51] and on Trimorphodon snakes [69]. As mentioned above,

Xantusia shows a similar pattern to Ligia. In contrast, Trimorphodon

exhibits a monophyly of the whole peninsula (including southern

California), which is more consistent with the traditional vicariant

scenario (i.e., south to north opening of the Gulf of California).

Our interpretation of the phylogeographic patterns of Ligia

would likely benefit from divergence time estimations with relaxed

clock methodologies. Unfortunately, no reliable calibration points

are available for the phylogeny of Ligia, such as dated fossils or

vicariant events. Furthermore, application of substitution rates

from other taxa is not appropriate because the assumption of

molecular clock in our data is violated. Although we identify nodes

in the phylogeny that could be attributed to dated vicariant events

(e.g., the Cape region vs. mainland separation, mid-peninsular

divergence(s), and the San Nicolas vs. Guaymas-San Carlos-Kino

divergence), these nodes are also among the most controversial

ones regarding their actual timing and/or whether or not they

represent dispersal rather than vicariance in Ligia. Thus,

calibrating a clock at these nodes would lead to questionable

conclusions.

Careyes Clade
This clade, which represents another highly divergent lineage in

our study area, is enigmatic because of its limited and peculiar

distribution. It was found in only two localities (Puerto Vallarta

and Careyes) separated by ,94 Km of coastline; spanning a

region that interrupts the distribution of one of the Gulf South

clades (blue circles; Figs. 2 and 4). Gulf South lineages found south

of the Careyes clade, form a monophyletic group (i.e., Manzanillo

S20 to Barra Potosi S17) that represents a much younger lineage

than the Careyes clade. How this Gulf clade ‘skipped’ the region

occupied by the Careyes clade is intriguing. The divergence of the

Careyes clade from the other lineages in our study may be related

to the suggested formation of a Miocene (,8 Ma) microbasin

around Puerto Vallarta [46].

Concluding remarks, implications, and future work
As expected from its biology, extraordinary levels of allopatric

genetic divergence among many localities of Ligia were observed in

our study area. The spatial distribution of well-supported Ligia

monophyletic groups corresponds strongly with geography, with

little spatial overlap among clades; suggesting allopatric differen-

tiation plays a major role in diversification of Ligia in this region.

Extremely high mitochondrial genetic divergence is observed

among the four main Ligia lineages identified, and within both, the

Baja Pacific-Southern California and the Gulf clades. Although L.

occidentalis is the only species usually recognized in the study area

(in addition to L. pallasi in central California), high levels of genetic

differentiation suggest the existence of multiple species. Indeed,

based on our results and the type locality, only the Central

California Clade would correspond to L. occidentalis. Therefore, the

taxonomy of Ligia in the study area needs to be revised. This is

important for conservation, as some divergent lineages have a very

restricted distribution and, thus, are vulnerable to local anthropo-

logical pressures on the rocky intertidal.

Relationships among the four main lineages found in our study

area could not be resolved. However, they are part of a well-

supported clade that contains L. exotica, L. perkinsi, L. hawaiensis, and

L. vitiensis; and excludes L. pallasi (distributed from central

California to Alaska), as well as all other Ligia species examined.

Inclusion of additional markers and Ligia lineages may help resolve

these relationships.

Differentiation of many divergent regional clades of Ligia in our

study area may be associated with past vicariant events. In

contrast, shallow divergences within some of these clades across

extensive distances may indicate recent exchange. For example,

recent low sea levels may have facilitated recent exchange among

localities in the upper Gulf and among localities within the

mainland area south of the Gulf.

The phylogeographic patterns of Ligia in the Gulf of California

and Baja Peninsula deviate from the pattern expected under a

vicariant scenario often used by phylogeographers. This is

surprising given that Ligia has characteristics of a taxon with a

high potential for retaining phylogeographic signatures of past

vicariant events that occurred in the study region (i.e., wide

distribution, high allopatric differentiation, very divergent lineages,

and extremely limited dispersal abilities). Although long-distance

over-water dispersal cannot be completely ruled out as the cause of

these conflicting patterns, the life history, exceptional degree of

allopatric divergences, and the non-random phylogeographic

pattern of Ligia, argue against this kind of dispersal as the cause

of this discordance. Furthermore, some of the most ‘‘conflicting’’

phylogeographic patterns of Ligia appear to be concordant with

aspects of alternative geological hypotheses that encompass an

older origin of the Gulf. In this regard, it is surprising that the

phylogeographic literature of this region conveys an impression

that the geological history is well resolved and agreed upon, while

this issue is subject to intense and ongoing debate among

geologists. Congruence between the phylogeographic patterns of

an organism with the characteristics of Ligia and an alternative

geological hypothesis will contribute to this debate, and under-

scores that alternative hypotheses should be considered when

examining phylogeographic patterns in this region. Examination

of other taxa with restricted dispersal abilities, whose ancestors

inhabited the region prior the formation of the Gulf of California,

and whose current distribution includes key areas such as the

southern Baja peninsula and the southern mainland, will allow for

an adequate examination of alternative geological hypotheses.

Shared patterns among multiple taxa with these characteristics

should shed light on the complex history of this important

biogeographic region. In addition, nuclear markers of Ligia should

be examined to corroborate that the mitochondrial phylogeo-

graphic patterns extend to the rest of the genome.
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Dataset S1 Alignment of the 16S ribosomal DNA gene and

Cytochrome C Oxidase Subunit I (COI) gene sequences used in
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Table S1 Sampled localities and corresponding latitude and

longitude (where available). IDs correspond to labels used in

Figures.

Found at: doi:10.1371/journal.pone.0011633.s002 (0.14 MB

DOC)

Table S2 Ranges of Kimura-2-parameter distances observed

among main Ligia clades found in our study area and outgroups.

Upper matrix: COI gene distances. Lower matrix: 16S rDNA

gene distances. Values on diagonal show maximum within-clade

divergence (left: COI gene; right: 16S rDNA gene).

Found at: doi:10.1371/journal.pone.0011633.s003 (0.07 MB

DOC)

Table S3 Cytochrome Oxidase I (COI) gene percent divergence

(Kimura-2-parameter correction) ranges within (diagonal) and
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among (below diagonal) selected lineages in the Southern

California clade (B; green in Fig. 3).

Found at: doi:10.1371/journal.pone.0011633.s004 (0.04 MB

DOC)

Table S4 Cytochrome Oxidase I (COI) gene percent divergence

(Kimura-2-parameter correction) among localities in the Califor-

nia 2 clade (C; orange in Fig. 3).

Found at: doi:10.1371/journal.pone.0011633.s005 (0.03 MB

DOC)

Table S5 Cytochrome Oxidase I (COI) gene percent divergence

(Kimura-2-parameter correction) ranges within (diagonal) and

among (below diagonal) selected groups of localities in the Baja

Pacific South clade (BPS; turquoise in Fig. 3).

Found at: doi:10.1371/journal.pone.0011633.s006 (0.05 MB

DOCX)

Table S6 Cytochrome Oxidase I (COI) gene percent divergence

(Kimura-2-parameter correction) ranges within (diagonal) and

among (below diagonal) selected groups of localities in the Gulf

North clade (red in Figs. 3 and 4). Shapes refer to clades defined in

Fig. 4.

Found at: doi:10.1371/journal.pone.0011633.s007 (0.05 MB

DOC)

Table S7 Cytochrome Oxidase I (COI) gene percent divergence

(Kimura-2-parameter correction) ranges within (diagonal) and

among (below diagonal) selected groups of localities in the Gulf

South clade (blue in Figure 4). Shapes refer to clades defined in

Fig. 4.

Found at: doi:10.1371/journal.pone.0011633.s008 (0.08 MB

DOC)
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