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Abstract
DNA barcoding has become the most popular approach for species identification in recent years. As part of 
the German Barcode of Life project, the first DNA barcode library for terrestrial and freshwater isopods from 
Germany is presented. The analyzed barcode library included 38 terrestrial (78% of the documented species 
of Germany) and five freshwater (63%) species. A total of 513 new barcodes was generated and 518 DNA 
barcodes were analyzed. This analysis revealed surprisingly high intraspecific genetic distances for numerous 
species, with a maximum of 29.4% for Platyarthrus hoffmannseggii Brandt, 1833. The number of BINs per 
species ranged from one (32 species, 68%) to a maximum of six for Trachelipus rathkii (Brandt, 1833). In spite 
of such high intraspecific variability, interspecific distances with values between 12.6% and 29.8% allowed a 
valid species assignment of all analyzed isopods. The observed high intraspecific distances presumably result 
from phylogeographic events, Wolbachia infections, atypical mitochondrial DNAs, heteroplasmy, or various 
combinations of these factors. Our study represents the first step in generating an extensive reference library 
of DNA barcodes for terrestrial and freshwater isopods for future molecular biodiversity assessment studies.
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Introduction

Isopods are a highly diverse group of invertebrates, with more than 10,300 species 
described to date (Boyko et al. 2008; Poore 2012). Most of these peracarid crusta-
ceans are free-living, but a number of marine species represent bizarre ectoparasites 
that infest crustacean and fish species (e.g., Raupach and Thatje 2006; Williams and 
Boyko 2012; Hadfield et al. 2014; Smit et al. 2014). Isopods range in body length 
from 0.5 mm (members of the family Microcerberidae) up to 500 mm (species of 
the famous giant deep-sea isopod genus Bathynomus Milne-Edwards, 1879) (Mc-
Clain et al. 2015). With more than 4,500 known marine species to date, isopods 
can be found from all shorelines of the world down to the abyssal depths of the 
oceans where asellote isopods have undergone a massive radiation and represent the 
dominant taxon (e.g., Wilson and Hessler 1987; Wägele 1989; Raupach et al. 2004, 
2009). Approximately 900 isopod species colonized freshwater habitats including 
lakes, rivers, underground waters, and even thermal springs (e.g., Verovnik et al. 
2005; Wilson 2008).

Isopods are, however, not restricted to the aquatic realms only. One group, the 
Oniscidea or woodlice, are the most successful group of crustaceans that invaded the 
land by far. Without doubt, these animals represent the most familiar and well-known 
group of isopods to humans. In contrast to other amphibious crustaceans, e.g., land 
crabs of the family Geocarcinidae or terrestrial hermit crabs of the genus Coenobita 
Latreille, 1829, no developmental stage (egg, juvenile, etc.) of the Oniscidea requires 
free water and all biological activities are conducted on land (e.g., Broly et al. 2013). The 
Oniscidea have evolved a number of unique adaptations, such as the water conducting 
system, various forms of pleopodal lungs and the cotyledons in the marsupium (e.g., 
Sfenthourakis and Taiti 2015). Based on the dorsal surface of their exoskeleton, various 
other morphological traits as well as ecological strategies and behavior, woodlice can 
be roughly categorized in three main groups (Schmalfuss 1984; Hornung 2011): i) 
the runners, characterized with an elongate, slightly convex body and long pereopods 
(e.g., Philoscia Latreille, 1804), ii) the clingers, with a flat broad body and short but 
strong pereopods (e.g., Platyarthrus Brandt, 1833), and iii) the rollers, with a highly 
convex body able to roll up into a ball (pill bugs) (e.g., Armadillidium Brandt, 1833) 
(Fig. 1). Whereas their dispersion ability is rather limited, woodlice are found in 
almost all biomes of the world except the poles and high mountain ranges (Hornung 
2011; Sfenthourakis and Taiti 2015). A hot spot of woodlice diversity is located in 
the Mediterranean region (Sfendourakis and Taiti 2015), and some species have 
been introduced to other parts of the world by humans in the past, e.g., to North 
America (Jass and Klausmeier 2000; Singer et al. 2012; Hornung et al. 2015) and 
other regions (e.g., Gruner 1966; Slabber and Chown 2002; Karasawa and Nakata 
2018). Furthermore, oniscid isopods are amongst the most common and species-rich 
components of cave-dwelling animal groups with high numbers of troglobitic species 
(Sfenthourakis and Taiti 2015). In some ecosystems, e.g., European forests, woodlice 
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Figure 1. Various woodlouse species of Germany A Oniscus asellus Linnaeus, 1758 B Armadillidium 
nasatum Budde-Lund, 1885 C Trachelipus ratzeburgii (Brandt, 1833) D Mesonicus alpicola (Heller, 1858) 
E Philoscia muscorum (Scopoli, 1763) F Haplophthalmus mariae Strouhal, 1953 G Armadillidium opa-
cum (C. Koch, 1841) H Platyarthrus hoffmannseggii Brandt, 1833. Scale bar: 1 mm. Photograph credits: 
A–G Jörg Spelda H Armin Rose.
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perform a central role in the decomposition, being largely phytosaprophagous and 
often occur in very high population densities (e.g., Dias and Hassall 2005; Gongalsky 
et al. 2005; Hättenschwiler et al. 2005; David 2014; Špaldoňová and Frouz 2014), but 
also act as important prey for a broad range of predatory arthropods (Raupach 2015). 
Until now, more than 3,700 species of oniscid isopods have been described worldwide 
(Schmidt 2008; Sfenthourakis and Taiti 2015). For Germany, 49 species of terrestrial 
and eight species of freshwater isopods are reported so far (Grünwald 2016).

Since its beginning almost 15 years ago, the concept of DNA barcoding for 
species identification has revolutionized biodiversity research (Valentini et al. 2009; 
Cristescu 2014). For many groups of animals, an approximate 650 base pair (bp) frag-
ment of the mitochondrial cytochrome c oxidase subunit I (COI) gene was selected as 
marker of choice (Hebert et al. 2003a). The efficiency of DNA barcoding is based on a 
simple assumption: each species will most likely have similar DNA barcode sequences 
representing their intraspecific variability whereas the genetic variation between species 
exceeds the variation within species (Hebert et al. 2003a, 2003b). In this context, the 
German Barcode of Life initiative (GBoL; www.bolgermany.de) aims at capturing the 
genetic diversity of animals, fungi, and plants of Germany. Various comprehensive 
barcode libraries of arthropods, e.g., marine crustaceans (Raupach et al. 2015), spiders 
(Astrin et al. 2016), and myriapods (Spelda et al. 2011), have been generated in the 
past. In terms of isopods, most DNA barcoding studies focused on marine species so 
far (e.g., Khalaji-Pirbalouty and Raupach 2014, 2016; Raupach et al. 2015; ; Brix et 
al. 2018; Chew et al. 2018; Kakui et al. 2019), whereas for terrestrial and freshwater 
taxa almost no studies do exist (Asmyhr and Cooper 2012; Zimmermann et al. 2015, 
2018a, 2018b). However, no comprehensive DNA barcode reference library has been 
published for these taxa until now.

In this study we present the first DNA barcode library of terrestrial and freshwater 
isopods with a focus on Central European species, with a specific emphasis on the 
Oniscidea. The analyzed barcode library includes 38 terrestrial (78% of the known 
species of Germany) and five freshwater (63%) species. In summary, 513 new barcodes 
were generated and a total number of 518 DNA barcodes was analyzed.

Materials and methods

Sampling of specimens

Samples used for this study were collected between 2000 and 2018 by pitfall traps, 
sieves, or by hand. Specimens were stored in ethanol (96%) and identified by two of the 
authors (MJR, JS) using a combination of keys provided in Schmölzer (1964), Gruner 
(1966), Hopkin (1991), and Berg and Wijnhoven (1997). In total, 513 new DNA bar-
codes of 46 species were generated. For our analysis we also included five DNA barcodes 
of the sea slater Ligia oceanica (Linnaeus, 1767) as part of a previous study (Raupach 
et al. 2010), generating a total data set of 518 DNA barcodes from 46 species. Five of 
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the analyzed species, Armadillidium album Dollfus, 1887 (n = 1, Spain), Armadillidium 
granulatum Brandt, 1833 (n = 2, France), Ligia italica Fabricius, 1798 (n = 2, Italy), 
Porcellionides sexfasciatus (Budde-Lund, 1885) (n = 4, Mallorca, Spain), and Tylos pon-
ticus Grebnitzky, 1874 (n = 1, Spain) are not recorded from Germany so far but were 
included for comparison. The number of analyzed specimens per species ranged from 
one (5 species) to a maximum of 57 for Porcellio scaber Latreille, 1804. Most isopods 
were collected in Germany (n = 458, 88.3%), whereas some specimens from other 
countries were included: Austria (3, 0.6%), Denmark (4, 0.8%), France (3, 0.6%), Italy 
(3, 0.6%), Luxembourg (38, 7.3%), Spain (6, 1.2%), and Switzerland (3, 0.6%).

DNA barcode amplification, sequencing, and data depository

Laboratory operations were carried out either at the Canadian Center for DNA Barcoding 
(CCDB), University of Guelph, following standardized protocols for COI amplification 
and sequencing (Ivanova et al. 2006; deWaard et al. 2008), the molecular lab rooms of 
the German Centre of Marine Biodiversity Research (DZMB), Senckenberg am Meer, 
in Wilhelmshaven, the working group Systematics and Evolutionary Biology at the 
Carl von Ossietzky University Oldenburg, or the Zoologisches Forschungsmuseum 
Alexander Koenig (ZFMK), Bonn, all located in Germany. Photographs were taken for 
each studied isopod before molecular work was performed. One or two legs of one body 
side were removed for the subsequent DNA extraction. For some very small isopods 
with a body length < 3 mm, e.g., specimens of Haplopthalmus Schöbl, 1860 or Jaera 
Leach, 1814, partial or complete specimens were used for DNA extraction. In the case 
of own molecular studies, DNA was extracted using the QIAmp Tissue Kit (Qiagen 
GmbH, Hilden, Germany) or NucleoSpin Tissue Kit (Macherey-Nagel, Düren, 
Germany), following the extraction protocol. Detailed information of used primers, 
PCR amplification and sequencing protocols are given in previous publications (see 
Raupach et al. 2015; Astrin et al. 2016). All purified PCR products were cycle-sequenced 
and sequenced in both directions at a contract sequencing facility (GATC, Konstanz, 
Germany), using the same primers as used in PCR. Double stranded sequences were 
assembled and checked for putative mitochondrial pseudogenes (numts) by analyzing 
the presence of stop codons, frameshifts as well as double peaks in chromatograms with 
the Geneious version 8.1.9 software package (Biomatters, Auckland, New Zealand) 
(Kearse et al. 2012). For sequence verification, BLAST searches (nBLAST, search set: 
others, program selection: megablast) were performed to confirm the identity of all 
new sequences as isopod sequences based on already published sequences (high identity 
values, very low E-values) (Zhang et al. 2000; Morgulis et al. 2008).

Comprehensive voucher information, taxonomic classifications, photos, DNA 
barcode sequences, used primer pairs and trace files including their quality are publicly 
accessible through the public data set “DS-BISCE” (Dataset ID: dx.doi.org/10.5883/
DS-BISCE) on the Barcode of Life Data Systems (BOLD; www.boldsystems.org) 
(Ratnasingham and Hebert 2007). Parallel to this, all new barcode data were deposited 
in GenBank (accession numbers MN810569–MN810873, MT521085–MT521292).

http://dx.doi.org/10.5883/DS-BISCE
http://dx.doi.org/10.5883/DS-BISCE
http://www.ncbi.nlm.nih.gov/nuccore/MN810569
http://www.ncbi.nlm.nih.gov/nuccore/MN810873
http://www.ncbi.nlm.nih.gov/nuccore/MT521085
http://www.ncbi.nlm.nih.gov/nuccore/MT521292


Michael J. Raupach et al.  /  ZooKeys 1082: 103–125 (2022)108

DNA barcode analysis

Following a standardized approach of DNA barcode analysis, the BOLD workbench 
was used to calculate the nucleotide composition of the sequences and distributions of 
Kimura-2-parameter distances (K2P; Kimura 1980) within and between species (align 
sequences: BOLD aligner; ambiguous base/gap handling: pairwise deletion). All bar-
codes became subject of the Barcode Index Number (BIN) system as it is implemented 
in BOLD (2020–06–05). In doing so, DNA barcodes are clustered in order to produce 
operational taxonomic units that closely correspond to species (Ratnasingham and 
Hebert 2013). Using the given default settings, a recommended threshold of 2.2% was 
applied for a rough differentiation of intraspecific and interspecific K2P distances (Rat-
nasingham and Hebert 2013). It should be noted, however, that the BIN assignments 
on BOLD may change due to the addition of new sequences. Therefore, individual 
BINs can be split or merged in the light of new data (Ratnasingham and Hebert 2013).

A neighbor-joining cluster analysis (NJ; Saitou and Nei 1987) was performed for 
all studied species for a graphical representation of the genetic differences between 
sequences and clusters of sequences using MEGA 10.0.5 (Kumar et al. 2018). Again, 
the K2P model was chosen as the model for sequence evolution for comparison 
purposes with previous studies. For validation, non-parametric bootstrap support 
values were obtained by resampling and analyzing 1,000 replicates (Felsenstein 1985). 
All analyses were based on an alignment of all studied barcode sequences that was 
generated using MUSCLE (Edgar 2004) implemented in MEGA 10.0.5. It should be 
explicitly noted that this analysis is not intended to be phyloge netic. Instead of this, 
the shown topology represents a graphical visualization of DNA barcode divergences/
distances and putative species cluster.

Results

We analyzed 518 DNA barcode sequences of 46 isopod species. A list of species is pre-
sented in the supporting information (Suppl. material 1). Fragment lengths of the ana-
lyzed DNA barcodes ranged from 407 to 658 bp. As previously shown for arthropods, 
the DNA barcode region was characterized by a high AT-content: average sequence 
compositions were A = 24.6%, C = 18.1%, G = 21.5%, and T = 35.8%. Fourteen 
(30.4%) species had intraspecific distances > 2.2%, with a maximum of 29.4% for Plat-
yarthrus hoffmannseggii Brandt, 1833. Interspecific distances within the analyzed taxa 
had values between 12.6% (Armadillidium granulatum Brandt, 1833; Armadillidium 
versicolor Stein, 1859) and 29.8% (Jaera sarsi Valkanov, 1936; Armadillidium nasatum 
Budde-Lund, 1885). In total, 76 BINs were found. The number of BINs per species 
ranged from one (32 species, 68%) to a maximum of six (Trachelipus rathkii (Brandt, 
1833)). No BIN sharing between species was observed. The NJ analyses revealed non-
overlapping clusters with bootstrap support values > 95% for 39 species (95%) with 
more than one studied specimen (Fig. 2). A more detailed topology of all analyzed 
specimens is presented in the supporting information (Suppl. material 2).
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Figure 2. Neighbor-joining (NJ) topology of the analyzed isopod species based on Kimura 2-parameter 
distances. Triangles show the relative number of individual’s sampled (height) and sequence divergence 
(width). Red triangles highlight terrestrial species with intraspecific maximum pairwise distances > 2.2%, 
whereas dark blue triangles indicate freshwater species with such distances. Numbers next to nodes represent 
non-parametric bootstrap values > 90% (1,000 replicates). Asterisks indicate species not recorded in Germany.
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Figure 2. Continued.
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Discussion

Our study revealed very high intraspecific distances for numerous woodlice species 
(Tab. 1), including abundant and well-known species as Porcellio scaber Latreille, 1804 
(maximum intraspecific distances (ISD): 12.16) or Trachelipus rathkii (Brandt, 1833) 
(max ISD: 13.47). Intraspecific distance values higher than 2.2% were also shown for 
three of the five analyzed freshwater species (Tab. 1). The observed high variability can 
be caused by a number of different factors and will be discussed in the following.

First, phylogeographic events may generate different haplotypes and distinct mito-
chondrial lineages. In the case of European woodlice species, numerous studies showed 
complex phylogeographic patterns correlated with high variability of the studied mito-
chondrial markers including COI, e.g., for species of the genus Alpioniscus Racovitza, 1908 
(Bedek et al. 2019), the common sea slater Ligia oceanica (Linneaus, 1767) (Raupach et 
al. 2014), Ligidium spp. (Klossa-Kilia et al. 2005), the common woodlouse Oniscus asellus 
Linnaeus, 1758 (Bilton et al. 1999), Orthometopon spp. (Poulakakis and Sfenthourakis 
2008), Helleria brevicornis Ebner, 1868 (Gentile et al. 2010), or two species of the genus 
Trachelipus Budde-Lund, 1908 (Parmakelis et al. 2008). Similar results have been also 
demonstrated for freshwater isopods of the genus Asellus Geoffroy, 1762 (Verovnik et 
al. 2004; Verovnik et al. 2005; Sworobowicz et al. 2015; Pérez-Moreno et al. 2017) and 
Proasellus Dudich, 1925 (Ketmaier 2002; Eme et al. 2013; Kilikowska et al. 2013). Our 
data set revealed extremely high intraspecific distance values for the myrmecophilous iso-
pod Platyarthrus hoffmannseggii Brandt, 1833 (n = 33), with a maximum value of 29.4% 
(Tab. 1). It is a small, white, and blind oniscid isopod that is widely-distributed in Europe 
and strictly associated with various ant species (e.g., Mathes and Strouhal 1954; Gruner 
1966; Parmentier et al. 2017). A few other species are found in the Mediterranean region, 
e.g., Platyarthrus schoebli Budde-Lund, 1879 (Garci and Cruz 1986), which can be easily 
differentiated from Platyarthrus hoffmannseggii. The NJ topology revealed three distinct 
lineages associated with three BINs (Fig. 3), but no clear correlation of the analyzed speci-
mens to specific sampling regions. Furthermore, we found no ant-host-specific correla-
tion of the observed lineages. For some other species distinct lineages were also detected, 
but no conspicuous substructures were revealed (see Suppl. material 3).

Second, the presence of the inherited alpha-proteobacteria Wolbachia Hertig, 1936 
can affect the mitochondrial variability in arthropods (e.g., Hurst and Jiggins 2005; 
Werren et al. 2008; Correa and Ballard 2016). These endosymbionts are transmitted 
vertically through host eggs and alter the biology of their host in various ways, includ-
ing the induction of reproductive manipulations, such as feminization, parthenogen-
esis, male killing and sperm-egg incompatibility (Werren et al. 2008). If a population 
is infected by Wolbachia, patterns of mitochondrial polymorphisms will be altered 
by natural selection that acts on these symbionts, either increasing or decreasing the 
frequency distribution of haplotypes within a population (Hurst and Jiggins 2005). 
Previous studies documented high infection rates of Wolbachia within many terrestrial 
as well as freshwater isopod species (e.g., Bouchon et al. 1998; Rigaud et al. 1999; Cor-
daux et al. 2012), including numerous species that have been analyzed in this study, 
e.g., Platyarthrus hoffmannseggii, Porcellio scaber, and Trachelipus rathkii. However, it is 
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very difficult to distinguish demographic variation from symbiont-induced effects of 
mitochondrial variability (see Hurst and Jiggins 2005).

Third, the amplification and sequencing of nuclear mitochondrial pseudogenes 
(numts) can obscure the true mitochondrial variability within a species (Bensasson et al. 
2001). Numts are nonfunctional copies of mitochondrial DNA in the nuclear genome. 
As consequence of reduced selection pressure, nucleotide substitutions and insertions as 
well as deletions may introduce stop codons and shifts in the reading frame of these inac-
tive copies (Buhay 2009; Schizas 2012). Various studies documented such numts for a 
number of different crustacean taxa (e.g., Buhay 2009; Baeza and Fuentes 2013; Kim et 
al. 2013). For isopods, however, numts have not been reported so far, and a careful inspec-
tion of our COI sequences revealed no double peaks and translation without stop codons.

Fourth, many oniscid species, e.g., Armadillidium vulgare (Latreille, 1804), Cylisticus 
convexus (De Geer, 1778), or Philoscia muscorum (Scopoli, 1763), are characterized by 
atypical mitochondrial DNA structures that are composed of linear monomers and 
circular dimers, generating different mitochondrial lineages (Doublet et al. 2012, 
2013). There is also a possible link between such atypical mitochondrial DNAs and 
heteroplasmy (i.e., the mixture of mtDNA genotypes within an organism) which has 
been documented for various woodlice in the past (Doublet et al. 2008, 2012). However, 
only a few studies are available until now, and most details still remain unclear.

Finally, distinct mitochondrial lineages that correlate with high genetic distances 
can give evidence for the existence of currently overseen cryptic species. Considering 
the previous discussed aspects, however, additional morphological and/or nuclear DNA 
sequence data are essential for a verification of truly distinct lineages. For freshwater and 
terrestrial isopods, a few studies demonstrated such integrative taxonomic approaches 
(McGaughran et al. 2005; Santamaria et al. 2017; Santamaria 2019). In terms of the 
analyzed taxa, no previous studies discussed the existence of cryptic species, and all 
specimens were checked and determined carefully before molecular works started.

Table 1. Molecular distances based on the Kimura 2-parameter model of the analyzed specimens of the 
analyzed isopod species with intraspecific distances > 2.2% using the BOLD work bench. ISD = intraspecific 
distance. BINs are based on the barcode analysis from 05–06–2020. See methods for explanation of basis.

Species n BINs Mean ISD Max ISD
Armadillidium vulgare (Latreille, 1804) 28 AAE6611, AAH4108, AAH4111, AAU1529 3.76 6.44
Asellus aquaticus (Linnaeus, 1758) 41 ACF1266, AEC4774, AAA1970 4.25 13.37
Oniscus asellus (Linnaeus, 1758) 33 ADM8743, ADM8116, ADK9123 2.12 5.63
Philoscia affinis Verhoeff, 1908 3 ADM8125, AAY1058 3.63 5.44
Philoscia muscorum (Scopoli, 1763) 38 AAH4103, AAH4104 0.3 2.98
Platyarthrus hoffmannseggii Brandt, 1833 33 AAV8050, AAV8051, ADK9658 9.4 29.35
Porcellio montanus Budde-Lund, 1885 6 ADR0694, ADM7742 1.26 3.81
Porcellio scaber Latreille, 1804 57 AAC3755, AAZ0248, ABA5892, ADK8850, ADM8147 2.58 12.16
Porcellio spinicornis Say, 1818 6 ADF7011, ADI3596 3.01 5.13
Proasellus cavaticus (Leydig, 1871) 8 ADX3790, ADW6988, ADX4659 1.61 2.95
Proasellus coxalis (Dollfus, 1892) 13 ACI1746, ACH7545 2.81 5.78
Trachelipus rathkii (Brandt, 1833) 16 AAH4102, ADK8699, ADK8533, ADM8087, ADM8088, 

ADF6188
6.89 16.59

Trichoniscoides helveticus (Carl, 1908) 23 ADM7247, ADM7248, ADM7249 1.07 5.46
Trichoniscus pusillus Brandt, 1833 22 AAN7523, AAZ1993 6.8 13.47

http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAE6611
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAH4108
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAH4111
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAU1529
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ACF1266
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AEC4774
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAA1970
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http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADM8116
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADK9123
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADM8125
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAY1058
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAH4103
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAH4104
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAV8050
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAV8051
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADK9658
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADR0694
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADM7742
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAC3755
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAZ0248
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ABA5892
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADK8850
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADM8147
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADF7011
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADI3596
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADX3790
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADW6988
http://boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:ADX4659
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Based on the given data we are currently unable to clarify the reasons of the 
observed high intraspecific variability within some of the analyzed species in detail. 
We suggest, however, that the detected high distances result from i) phylogeographic 

Figure 3. Subtree of the Neighbor-joining topology based on Kimura 2-parameter distances of all ana-
lyzed specimens of Platyarthrus hoffmannseggii Brandt, 1833 and nearest neighbor. Branches with speci-
men ID-number from BOLD and sample localities. Numbers next to internal nodes are non-parametric 
bootstrap values (in %) with values higher than 80. BIN values are based on the barcode analysis from 
05-06-2020. The isopod drawing by Christian Schmidt was obtained from Raupach (2005).
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effects, ii) Wolbachia infections, iii) atypical mitochondrial DNAs and/or heteroplasmy, 
or, most likely, iv) various combinations of these phenomena in many cases. More 
specimens from different geographic regions as well as additional nuclear markers 
should be analyzed to verify this in detail. Despite these high intraspecific distances and 
multiple BINs for some species, however, high interspecific distances in combination 
with monophyletic lineages allow a correct determination of all studied taxa.

Conclusions

The development of new sequencing technologies changed biological science 
significantly. As a consequence, DNA-based approaches have become more and more 
popu lar for the assessment of biodiversity and identification of specimens. Parallel 
analysis of thousands of specimens, bulk samples (metabarcoding) or environmental 
DNA (eDNA) will become routinely used techniques in modern species diversity 
assessment studies (e.g., Shokralla et al. 2012; Moriniere et al. 2016; Brauckmann et al. 
2019; Hardulak et al. 2020). Whereas hypervariable regions of nuclear rRNA genes or 
other mitochondrial gene fragments may represent useful markers for such studies (e.g., 
Mohrbeck et al. 2015; Gillet et al. 2018; Lopez-Escardo et al. 2018), COI has become 
the most popular and efficient marker of choice (e.g., Andujar et al. 2018; Curry et al. 
2018; Brauckmann et al. 2019; Hausmann et al. 2020). All these approaches, however, 
rely highly on comprehensive on-line reference libraries of correctly identified specimens 
(e.g., Brandon-Mong et al. 2015; Creer et al. 2016; Staats et al. 2016). Ideally, such 
libraries include sequence data of a species` complete distribution range that can provide 
additional information of phylogeographic substructures that are well-known for many 
species (e.g., Gentile et al. 2010; Raupach et al. 2014; Paill et al. 2021).

The necessity of DNA barcode reference libraries is also important for the modern 
molecular-based analysis of soil biodiversity (Taberlet et al. 2012; Orgiazzi et al. 2014; 
Rota et al. 2020). Reference libraries have been already published for a variety of typi-
cal soil-inhabiting taxa, e.g., earthworms (Porco et al. 2013; Pansu et al. 2015; Sun et 
al. 2018), mites (Young et al. 2012; Young et al. 2019), springtails (Hogg and Hebert 
2004; Porco et al. 2013), spiders (Astrin et al. 2016), myriapods (Spelda et al. 2011) 
and ground beetles (Raupach et al. 2016; Raupach et al. 2018). In our present study 
we lay the foundations for a comprehensive DNA barcode data set for terrestrial and 
freshwater isopods of Central Europe.
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Supplementary material 1

Barcode analysis using the BOLD workbench
Authors: Michael J. Raupach, Björn Rulik, Jörg Spelda
Data type: Data table
Explanation note: Molecular distances based on the Kimura 2-parameter model of 

the analyzed specimens of the analyzed isopod species. Divergence values were 
calculated for all studied sequences, using the Nearest Neighbor Summary 
implemented in the Barcode Gap Analysis tool provided by the Barcode of Life 
Data System (BOLD). Align sequencing option: BOLD aligner (amino acid based 
HMM), ambiguous base/gap handling: pairwise deletion. ISD = intraspecific 
distance. BINs are based on the barcode analysis from 05–06–2020. Asterisks 
indicate species not recorded from Germany. Species pairs with intraspecific 
distances > 2.2% are marked in bold.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 2

Neighbor-joining topology
Authors: Michael J. Raupach, Björn Rulik, Jörg Spelda
Data type: Neighbor-joining topology
Explanation note: Neighbor-joining phylogram of all analyzed isopod specimen based 

on Kimura 2-parameter distances. Individuals are classified using ID numbers from 
BOLD and species name. Numbers next to nodes represent non-parametric boot-
strap values (1,000 replicates, in %).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
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use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 3

Neighbor-joining topology of the BOLD workbench including BIN analysis
Authors: Michael J. Raupach, Björn Rulik, Jörg Spelda
Data type: Neighbor-joining topology
Explanation note: Neighbor-joining phylogram of all analyzed isopod specimen based 

on Kimura 2-parameter distances using the BOLD workbench from 07–06–2020. 
Individuals are classified using ID numbers from BOLD and species name. Further-
more, geographic information and BIN numbers are provided for each specimen.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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