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Abstract 15 

Aggregation (gathering together) and sheltering (hiding in cover) are basic behaviours that 16 

might reduce the risk of predation. However, both behaviours have costs, like increased 17 

competition over resources and high prevalence of contact-spread parasites (aggregation) or 18 

lost opportunities for foraging and mating (sheltering). Therefore, adaptive variation in these 19 

behaviours is expected between populations with varying levels of predation risk. We 20 

compared aggregation and sheltering in surface- (various predators) and cave-adapted (no 21 

predator) populations of the Isopod Asellus aquaticus in a common garden experiment. Since 22 

the cave environment is constantly dark, we also tested for population variation in light-23 

induced behavioural plasticity by applying light treatments. Variation in sheltering was 24 

explained by habitat type: cave individuals sheltered less than surface individuals. We found 25 

high between-population variation in aggregation with or without shelters and their light-26 

induced plasticity, which were unexplained by habitat type. Cave individuals habituated 27 

(decreased sheltering), while surface individuals showed sensitization (increased sheltering). 28 

We suggest that population variation in sheltering is driven by predation, while variation in 29 

aggregation must be driven by other, unaccounted environmental factors, similarly to light-30 

induced behavioural plasticity. Based on habituation/sensitization patterns, we suggest that 31 

predation-adapted populations are more sensitive to disturbance related to standard laboratory 32 

procedures. 33 

 34 

Keywords: aggregation, Asellus aquaticus, cave adaptation, shelter use 35 

  36 
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Introduction 37 

Behaviour is perhaps the most plastic quantitative phenotypic trait (West-Eberhard, 2003). 38 

However, despite high plasticity and the potential for a moment-by-moment optimisation to 39 

the prevailing environment, geographic between-population variation within species in 40 

behaviour is evident, suggesting local (genetic) adaptation in behaviour (e.g. Foster, 1999; 41 

Foster & Endler, 1999). There are several examples of between-population behavioural 42 

divergence. For instance, the effect of varying predation pressure on behaviour has been 43 

proven in common frog (Rana temporaria) tadpoles (Van Buskirk & Arioli, 2005), nine-44 

spined stickleback (Pungitius pungitius) (Herczeg, Gonda, & Merilä, 2009a) or guppy 45 

(Poecilia reticulata) (Magurran & Seghers, 1991, 1994). Such environmentally driven 46 

population divergence in behaviour has been proven to be genetically based in several species 47 

(see Breden, Scott, & Michel, 1987; Brown, Burgess, & Braithwaite, 2007; Herczeg, Ab 48 

Ghani, & Merilä, 2013; Laine et al., 2014). 49 

 50 

Aggregation (gathering together) is a basic behaviour exhibited by many animals (Parrish & 51 

Hamner, 1997; Parrish & Edelstein-Keshet, 1999), nevertheless, it does not necessarily imply 52 

any social organization (e.g. antelopes gather for water; Allaby, 1994). Aggregation can be 53 

seen as a form of evolutionary adaptation with multiple advantages (Pitcher, 1986): it might 54 

help terrestrial species avoiding desiccation (Brockett & Hassall, 2005), it could improve 55 

feeding efficiency (Heupel & Simpfendorfer, 2005) and it could provide a mechanism of 56 

defence from predators (Broly et al., 2013). However, aggregation behaviour may also have 57 

costs, such as higher vulnerability to contact-spread parasites, increased competition for 58 

resources and conspicuousness of the group towards predators (Pitcher, 1986; Romey, 1995). 59 

Hence, decreased aggregation is expected in populations where the benefits of the behaviour 60 

are low. For instance, the negative covariance between predation pressure and the social costs 61 
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of aggregation was proven experimentally (Herczeg, Gonda, & Merilä, 2009b). While many 62 

studies were focusing on aggregation behaviour (schooling, shoaling, flocking, herding) in 63 

vertebrates, it is also well-known in invertebrates (Hassall & Tuck, 2007; Kullmann et al., 64 

2008; Tanaka & Nishi, 2008; Broly et al., 2012).  65 

 66 

Sheltering (hiding under cover) is one of the most straightforward antipredator behaviours, 67 

when it is not applied against some other environmental effects, like too harsh sunlight. 68 

Sheltering behaviour has obvious benefits, but it also incurs costs due to lost opportunities 69 

connected to alternative beneficial behaviours, like mate-searching or foraging (e.g. Cooper & 70 

Frederick, 2007; Sih, 1992). We know from previous studies that sheltering behaviour 71 

successfully reduces the risk of predation (Cooper & Frederick, 2007; Kullmann et al. 2008). 72 

Further, a previous study showed that a marine isopod, Idothea balthica, traded shelter for 73 

food (Vesakoski, Merilaita, & Jormalainen, 2008). The antipredatory role of aggregation and 74 

sheltering together with their predation pressure related population variation was supported in 75 

many vertebrate taxa (e.g. fish; Magurran & Seghers, 1994; Griffiths, Armstrong, & Metcalfe, 76 

2003; Heupel & Simpfendorfer, 2005; amphibians: Watt, Nottingham, & Young, 1997; 77 

DeVito, 2003; reptiles: Gardner et al., 2016; birds: Carrascal, Alonso, & Alonso, 1990; 78 

Forsman et al., 1998; Goodenough et al., 2017; mammals: Fryxell, 1991; Treves, Drescher, & 79 

Ingrisano, 2001). 80 

 81 

Environmental conditions in subterranean environments differ drastically from those of the 82 

surface. Caves and related habitats are characterized by the absence of light, food scarcity, 83 

simplified communities and strongly buffered against daily, seasonal and yearly 84 

environmental variation, further, as being physically separated from each other, they represent 85 

natural replicates with no gene flow between them (Culver & Sket, 2000; Gibert & 86 
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Deharveng, 2002; Tobler et al., 2008; Culver & Pipan, 2009). Importantly, most caves are 87 

free from both vertebrate and invertebrate predators (Culver & Pipan, 2019; White, Culver, & 88 

Pipan, 2019; but see Culver, 1975), in fact, predator avoidance was previously suggested as a 89 

main factor behind cave-colonisation in several insect species (Rivera et al., 2002; Juan & 90 

Emerson, 2010), as well as in Mexican tetra, Astyanax mexicanus (Romero, 1985). Further, 91 

recent results indicate the importance of low-predation pressure behind occurrence of the 92 

salamanders Eurycea lucifuga and Speleomantes strinatii in caves (Salvidio et al., 2017; 93 

Bradley & Eason, 2018; respectively). Intuitively, in populations with longer history of cave-94 

adaptation, the loss or reduction of anti-predatory responses is expected. In line with this, 95 

empirical results show that predator recognition is maintained in cave-dwelling populations of 96 

Pyrenean newt (Calotriton asper), a recent colonist, while such behaviour is lost in the highly 97 

adapted Olm (Proteus anguinus) (Manenti et al., 2020). Despite of the consensus on the 98 

importance of difference in predation pressure between surface and subterranean habitats, 99 

how between-population environmental variation affects behavioural traits, such as 100 

aggregation and sheltering together is rarely tested at best. Previously, it was shown that in 101 

two cave-dwelling populations of Atlantic molly, Poecilia mexicana, fish exhibit reduced 102 

shoaling behaviour (Plath & Schlupp, 2008) and the same pattern was endorsed from multiple 103 

cave-adapted populations of A. mexicanus (Kowalko et al., 2013). However, loss of vision 104 

might be a more important factor behind such behavioural differences in these fishes than the 105 

lack of predation (Kowalko et al., 2013). 106 

 107 

Here, we studied population variation in aggregation and sheltering behaviour of common 108 

water louse, Asellus aquaticus. In a common garden experiment, we tested aggregation 109 

behaviour with and without shelter, and shelter use in general in a highly specialised cave 110 

population (no predation, permanent darkness) and three surface populations (various 111 
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predators present, daily light fluctuations. We also applied light treatments (presence/absence) 112 

under common garden settings. Aggregation would hardly increase foraging efficiency of a 113 

detritivorous species feeding on a wide variety of stationery food sources (e.g. living and dead 114 

plant material, together with bacteria and fungi growing on them for surface populations, see 115 

Moore, 1975; Graça et al., 1993; Bloor, 2011; and endogenous bacterial mats in the studeied 116 

cave, see Herczeg et al., 2020), and the potential importance of aggregating for mating was 117 

ruled out by involving only males in the study. Hence, we expect that the main environmental 118 

driver of the evolution of aggregation behaviour in our study system is the presence / absence 119 

of predation. The same was expected for sheltering behaviour, because sheltering in the 120 

natural populations is unlikely to provide defence against various forms of environmental 121 

harshness, but predation. Therefore, we predicted that predation-adapted surface A. aquaticus 122 

populations are more risk-averse (showing higher levels of aggregation and sheltering) than 123 

the cave population adapted to the lack of predation. Expectations regarding light-induced 124 

plasticity are less straightforward. While vision of cave-adapted A. aquaticus is highly 125 

reduced, they are still sensing light (see Protas, Trontelj, & Patel, 2011; Pérez-Moreno, 126 

Balázs, & Bracken-Grissom, 2018; Re et al., 2018) and showing negative phototaxis (Fišer et 127 

al., 2016). Assuming that surface A. aquaticus populations are under higher predation risk 128 

during light than at night, we predicted all populations to show higher aggregation and shelter 129 

use when tested in light, the response being the strongest in cave-adapted individuals. 130 

 131 

Material and Methods 132 

Study system 133 

A. aquaticus is widespread in a wide variety of surface freshwater habitats across the Western 134 

Palearctic (Verovnik, Sket, & Trontelj, 2005) and successfully colonized caves in Central 135 

Europe on several independent occasions (Verovnik et al., 2005; Verovnik, Prevorčnik, & 136 
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Jugovic, 2009). Similarly to other cave-dwelling species, cave adapted A. aquaticus exhibit 137 

the typical troglomorphic adaptations, like reduced eyes and loss of pigmentation (Pérez-138 

Moreno et al., 2018; Re et al., 2018). 139 

 140 

Three surface populations and one cave population of A. aquaticus were used in the 141 

experiments. All populations live within or in the vicinity of Budapest, Hungary. The Molnár 142 

János Cave (47.518° N, 19.03608° E) is a water-filled cave of hydrothermal origin with a 143 

water temperature of 23-24 °C all year round. Despite the absence of physical barriers, the 144 

population inhabiting the Molnár János Cave has been genetically isolated from surface 145 

populations (including the Malom Lake population, see below) for at least 60 000 years and it 146 

shows the aforementioned troglomorphic adaptations (Pérez-Moreno et al. 2017). The only 147 

available food source for this cave population of A. aquaticus is endogenous bacterial mats, 148 

visible organic material from the surface does not enter the cave (personal observation). This 149 

latter notion is supported by results from Erőss et al. (2006) and Bodor et al. (2015), whose 150 

results indicate no hydraulic connection between the Rózsadomb recharge area and the 151 

discharge area of the Boltív Spring (connected to the Molnár János Cave – Malom lake 152 

system). The cave's outflow to the surface forms a small lake (Malom Lake) right at the cave 153 

entrance (47.518° N, 19.03608° E), harbouring the first sampled surface population. Malom 154 

Lake receives natural surface light, but the water temperature is similar that of the cave all 155 

year round. Guppies (P. reticulata) were introduced to Malom Lake during the 20th century. 156 

In the absence of other native fish species, guppies, forming a high-density population, are the 157 

main predators of A. aquaticus in the Malom Lake (Berczik, 1956; personal observation). The 158 

remaining two surface populations, Gőtés Lake (47.59556 ° N, 19.04142° E) and Dunakeszi 159 

Peat-moor (47.615613° N, 19.126392° E) are subject to natural surface light regime and 160 

temperature fluctuations typical to the region. These surface populations are members of a 161 
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diverse community consisting competitor and predator species, A. aquaticus is known to be a 162 

food source for fish and larval dragonflies in surface habitats (Harris, Karlsson Green, & 163 

Pettersson, 2013), while the cave-dwelling population experience low biotic complexity with 164 

a small number of competitors and absence of predators in a stable and predictable 165 

environment. 166 

 167 

Collecting and housing the experimental animals 168 

Adult animals were collected on 30 October 2019. Samples were collected by hand sorting 169 

with mash net except the subterranean animals from the Molnár János Cave where a modified 170 

Sket-bottle was used (Chevaldonné et al., 2008) and cave diving was necessary. 2019 had an 171 

exceptionally warm autumn in the region (record 19.7 ºC daily high temperature in Budapest 172 

on 21 October), hence, water temperature at the surface habitats was similar to the 173 

temperature of thermal water at Malom Lake and Molnár János Cave. After collection, 174 

animals were immediately transported to the facilities of the Biological Institute of Eötvös 175 

Loránd University (Budapest, Hungary). As mentioned above, we used only males to rule out 176 

the potential importance of aggregating for mating. Populations were randomly divided into 177 

two subgroups and individuals were housed together in transparent plastic containers 178 

(volume: 5 L, dimensions: 32cm × 21cm × 11cm, length × width × height, respectively). 179 

Individuals were kept in these containers during the whole experiment (except behavioural 180 

tests, see below). Water collected at the source habitats were used to fill the containers, water 181 

was regularly refilled. We also provided small stones as shelters. Containers were placed in 182 

custom made, light-controlled chambers (see below). Surface populations were acclimated to 183 

a daily light cycle (10h light: 14h dark; controlled by a timer), while the cave-dwelling 184 

population was acclimated to complete darkness and all handling processes were done under 185 
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red light. The temperature in the lab varied between 23-24 °C. Animals did not receive food 186 

during the acclimation period and experiments. 187 

 188 

Experimental setup 189 

To video-record the animals’ behaviour in different light conditions, custom made recording 190 

chambers were built (100 cm × 55 cm × 105 cm; length × width × height). All chambers were 191 

equipped with two light sources: LEDs imitating daylight (4500 K, CRI > 90) at the top and 192 

infrared LEDs (920 nm) at the bottom. This infrared wavelength is out of the visible range of 193 

the animals (Dember & Richman, 2012). The chambers were closed from sides with non-194 

transparent black plastic boards so that light did not scatter inside/ outside of the chambers. 195 

Inside each chamber, we mounted a webcam (Logitech C920 FullHD; Logitech, Lausanne, 196 

Switzerland) that was modified to improve the quality of videos recorded in infrared light. 197 

OBS Studio software (OBS Studio Contributors) was used to capture videos at 5 frames per 198 

second at HD resolution (1280 x 720). 199 

 200 

We tested sheltering behaviour and aggregation in the presence of shelters on 1 November 201 

2019. The experimental set-up consisted of circular arenas (Petri-dishes, diameter 140 mm). 202 

The bottom of all Petri dishes was coarsened with emery paper to enable animals’ normal 203 

movement (Fišer et al., 2019). These Petri dishes were housing the tested groups (see below). 204 

Five shelters, made of red glass were placed into the arenas (red glass reduces light intensities 205 

and filters the spectrum of light; Devigne et al., 2011). The shelters were quadratic in shape (3 206 

cm wide), each of them was placed equal distances from each other inside the arenas. One 207 

side of the shelter was raised slightly with a tiny piece of glass so the animals could crawl 208 

under and receive thigmotactic stimuli (Fišer et al. 2019). 209 

 210 
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Animals within population were randomly divided into six groups (five individuals in each 211 

group, sampled from the two holding tanks per population randomly). The groups were placed 212 

into small removable cylinders (diameter = 28 mm) located in the centre of the Petri-dishes. 213 

The 24 Petri-dishes were randomly divided between two recording chambers. After ca. three 214 

minutes of acclimation, the cylinders were removed and the video-recording has started. Each 215 

group was tested both in the presence and absence of light, treatments having different order 216 

in the recording chambers. After 150 min of recording, light regimes were changed in the 217 

recording chambers and a second recording-period of 150 min started. Infrared light was on 218 

for all tests, as it was needed for video recording. Aggregation in the absence of shelters were 219 

tested on 5 November 2019. The experimental set-up was similar as in the previous 220 

experiment, except that individuals’ behaviour was assessed in the absence of shelters. 221 

 222 

For the video analyses, the first and the last 30 minutes of recording were used (hereafter: 223 

recording period) to see how behaviour changed along the experiment. Aggregation behaviour 224 

in the presence of shelters was quantified by the average number of animals under the 225 

occupied shelters (hereafter: ‘shelter sharing’) at a given observation. Sheltering behaviour 226 

was represented by the proportion of animals under shelter (hereafter ‘sheltering’) at a given 227 

observation. Each behavioural variable was recorded in every third minute within these 228 

recording periods, which left us 20 observations per Petri-dish altogether (10 observations per 229 

recording perios). To quantify aggregation behaviour in the absence of shelters, we measured 230 

the distance between all pairs within the groups for every observation and then calculated the 231 

mean of these distances, thus, there was only one number per group for every observation 232 

describing group cohesion (hereafter: ‘distance’). For measuring the distances between 233 

individuals, we used ImageJ software (Schneider, Rasband, & Eliceiri, 2012). Note that 234 

individual (non-averaged) data could be analysed too, but adding the extra level of hierarchy 235 
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to the model would make the model problematic. However, we ran this model too and it 236 

yielded qualitatively similar results to the analysis of averaged data, and thus we only report 237 

the latter. 238 

 239 

Statistical analyses 240 

For analysing distance, shelter sharing and sheltering, we ran separate linear mixed models 241 

(LMMs) by using the packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova, 242 

Brockhoff, & Christensen, 2016) available in the RStudio interface 1.2.5001 (RStudio Team, 243 

2020). All models were built with population, treatment (light vs. dark), recording periodt 244 

(beginning vs. end period of the experiment) and their interactions as fixed effects. Because 245 

interpreting three-way factorial interactions is highly problematic, we included only the two-246 

way interactions. Order of trial (first vs. second run within a day) was treated as a nuisance 247 

variable and we included it in the models a single fixed effect. For the model on shelter 248 

sharing, the number of individuals hiding was also added as a fixed effect for correction. In 249 

this model, we excluded observations where less than two individuals were hiding. Group 250 

identity was also added to the models as a random effect to control for the non-independence 251 

in the data. In these models, fixed effects were tested by Wald’s chi-square tests and random 252 

effects by likelihood ratio tests. Sheltering (proportion data) was arcsine transformed 253 

(following Sokal & Rohlf, 2012) to stabilize variances. We also report the proportion of 254 

explained variance by the fixed factors (marginal R2) and by both fixed and random factors 255 

(conditional R2) available in the MuMIn package (Barton, 2009). 256 

 257 

Results 258 

The LMM on distance revealed significant population × treatment and population × recording 259 

period interactions (Table 1). However, the only strong pattern was among populations: 260 



12 
 

individuals from the Molnár János Cave and Gőtés Lake aggregated significantly less than 261 

individuals from Malom Lake and Dunakeszi Moor (Fig 1 a, b). The population × treatment 262 

interaction patterns were rather weak and inconsistent, suggesting that the cave population 263 

aggregates more in light, while the surface populations aggregate more in dark than in light. 264 

The population × recording period interaction showed weak trends suggesting that 265 

populations with higher aggregation increased, while populations with lower aggregation 266 

decreased aggregation along the observation. Order of trial was also significant (Table 1), 267 

individuals aggregated less in the second round of the experiment than in the first (data not 268 

shown). The fixed effects explained 23.4% of the total variance, while the full models 269 

explained 49% which can be seen as sufficient explanatory power for behavioural variables. 270 

For the non-significant effects see Table 1. 271 

 272 

Table 1. Result of Linear Mixed Model on aggregation behaviour in the absence of shelters in 273 

Asellus aquaticus. Significant effects are in bold font. 274 

Model term χ2 (df) P 

Fixed effects   

population 510.17 (4) < 0.001 

treatment 1.04 (1) 0.31 

recording period 1.78 (1) 0.18 

order of trial 4.22 (1) 0.04 

population × treatment 18.52 (1) < 0.001 

population × recording period 12.83 (3) 0.005 

treatment × recording period 0.43 (1) 0.51 

Random effects   

Group 269.27 (1) < 0.001 
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 275 

Fig.1. Aggregation in the absence of shelters in the four tested populations of Asellus 276 

aquaticus. a) aggregation in the in the presence vs. absence of light. b) aggregation in the 277 

first vs. second recording period. Least square means ± standard errors are shown. 278 

 279 

Results of LMM on shelter sharing revealed significant population × treatment and population 280 

× recording period interactions (Table 2). The population × treatment interaction is based on 281 
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Malom Lake animals showing increased aggregation as a response to light, Gőtés Lake 282 

individuals showing a weaker opposite response, while the remaining populations showing no 283 

response (Fig. 2a). The population × recording period interaction revealed that all but the 284 

Dunakeszi moor individuals tended to increase aggregation along the experiment, Molnár 285 

János Cave individuals showing the strongest response (Fig. 2b). Number of individuals 286 

hiding had the obvious effect: when more individuals were under shelter, shelter sharing 287 

increased (data not shown). The fixed effects explained 14.6% of the total variance, while the 288 

full models explained 21.3% which can be seen as sufficient explanatory power for 289 

behavioural variables. For the non-significant effects see Table 2. 290 

 291 

Table 2. Result of Linear Mixed Model on aggregation behaviour under shelters in Asellus 292 

aquaticus. Significant effects are in bold font. 293 

Model term χ2 (df) P 

Fixed effects   

population 57.55 (4) < 0.001 

treatment 0.78 (1) 0.38 

recording period 6.03 (1) 0.01 

order of trial 2.29 (1) 0.13 

number of individuals hiding 6.27 (1) 0.01 

population × treatment 11.79 (3) 0.008 

population × recording period 13.56 (3) 0.004 

treatment × recording period 0.31 (1) 0.58 

Random effects   

Group 6.24 (1) 0.01 

 294 
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 295 

Fig.2. Aggregation under shelters in the four tested populations of Asellus aquaticus. a) 296 

aggregation in the in the presence vs. absence of light. b) aggregation in the first vs. second 297 

recording period. Least square means ± standard errors are shown. 298 

 299 

LMM on sheltering revealed significant population × treatment, population × recording period 300 

and treatment × recording period interactions (Table 3). The population × treatment 301 

interaction showed that all populations tended to shelter more in the light treatment than in the 302 
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dark treatment, but this reaction was particularly strong in the Malom Lake population (Fig. 303 

3a). The population × recording period interaction revealed that sheltering was similar across 304 

the four populations at the beginning of the experiment, while towards the end of the 305 

experiment surface populations sheltered more and the cave population sheltered less (Fig. 306 

3b). The treatment × recording period interaction indicated that the increase in sheltering 307 

along the experiment was stronger in the light, than in the dark treatment (data not shown). 308 

The population trends were also clear, cave-adapted individuals sheltered less than their 309 

surface conspecifics (Fig. 3a, b). Order of trial was also significant (Table 3), individuals 310 

sheltered more in the second round of the experiment than in the first (data not shown). The 311 

fixed effects explained 23.3% of the total variance, while the full models explained 34.6% 312 

which can be seen as sufficient explanatory power for behavioural variables. For the non-313 

significant effects see Table 3. 314 

  315 
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Table 3. Result of Linear Mixed Model on sheltering behaviour in Asellus aquaticus. 316 

Significant effects are in bold font. 317 

Model term χ2 (df) P 

Fixed effects   

population 278.31 (4) < 0.001 

treatment 81.88 (1) < 0.001 

recording period 42.44 (1) < 0.001 

order of trial 16.92 (1) < 0.001 

population × treatment 33.00 (3) < 0.001 

population × recording period 69.56 (3) < 0.001 

treatment × recording period 9.18 (1) < 0.001 

Random effects   

Group 87.65 (1) < 0.001 

 318 
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 319 

Fig.3. Sheltering in the four tested populations of Asellus aquaticus. a) sheltering in the 320 

presence vs. absence of light. b) sheltering in the first vs. second recording period. Least 321 

square means ± standard errors are shown. 322 

  323 
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Discussion 324 

Aggregation and sheltering behaviours could be seen as two potential forms of evolutionary 325 

adaptation that gives animals multiple advantages, including increased defence against 326 

predators. In the present study, we tested hypotheses about how the predator-free cave 327 

environment select for decreased aggregation and sheltering, and how cave-adaptation affects 328 

behavioural responses to changing light conditions in the widely distributed habitat generalist 329 

A. aquaticus, a small freshwater isopod that successfully colonises caves. We tested these 330 

hypotheses in a manipulative common garden experiment based on three surface and one 331 

cave-adapted (showing troglomorphic phenotype and being genetically isolated from surface 332 

populations at least 60,000 years ago; Pérez-Moreno et al., 2017) populations. The results are 333 

mixed, in some cases supporting our predictions, in others rejecting it, while some unexpected 334 

patterns got also revealed. 335 

 336 

Aggregation 337 

Contrary to our initial prediction, we found no systematic differences in aggregation 338 

behaviour among surface- and cave-dwelling A. aquaticus in an environment without shelters. 339 

However, we found high between-population variation, two surface populations showing 340 

considerably higher tendency for aggregation than the cave population and the third surface 341 

population (Gőtés Lake). It is possible that the Gőtés Lake population experiences lower than 342 

expected predation pressure (we have no detailed fauna list with density estimates from the 343 

studied populations), or some other environmental factor is responsible for the population 344 

variation. For instance, it is possible that in Gőtés Lake, more aggressive male A. aquaticus 345 

are favoured than in the other surface populations, resulting in the reported patterns. Note that 346 

aggression and sociability are different personality traits (sensu Réale et al., 2007), hence, 347 

they can potentially evolve independently. Aggregation behaviour might also be connected to 348 
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other functions than predator avoidance. For instance, aggregation could reduce the time spent 349 

on finding mating partners and provide increased number of mating opportunities (Beauche & 350 

Richard 2013) and thus this behaviour might be affected by local population densities or 351 

variation in operative sex ratios. According to a previous study, aggregation might be related 352 

to feeding behaviour (Heupel & Simpfendorfer 2005). However, based on our knowledge, A. 353 

aquaticus is a detritivorous species feeding on various living and dead plant material in its 354 

surface habitats, and on endogenous bacterial mats in Molnár János Cave (Herczeg et al., 355 

2020 and references therein), thus, it is improbable that aggregation yields any foraging 356 

benefits for the species. 357 

 358 

Animals are not only aggregating in the open or during activity but they also often aggregate 359 

under shelters, during inactivity (Devigne et al., 2011). In a previous study on common rough 360 

woodlouse (Porcellio scaber Latreille, 1804), where aggregation under shelters is generally 361 

observed and individuals are showing strong thigmotaxis, researchers found the same 362 

dynamics of aggregation in the presence or absence of shelters (Devigne et al. 2011; Broly et 363 

al. 2012). It has also been experimentally shown that when groups of rough woodlouse in 364 

bright arenas were offered two dark shelters, almost 80% of individuals in a group aggregated 365 

under one shelter (Broly & Devigne, 2011; Broly et al. 2012). Hence, shelter use is often non-366 

random, individuals can prefer shelters that are already occupied, choosing shelters with 367 

larger aggregations. We expected similar patterns regarding aggregation under shelters than 368 

without shelter, assuming that aggregation under shelters might have a relevance against 369 

predators. However, there were no clear population trends between the cave population and 370 

the surface populations.  371 

 372 

https://en.wikipedia.org/wiki/Pierre_Andr%C3%A9_Latreille
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Regarding the light treatment, considering the (i) night activity of surface A. aquaticus 373 

(Andrikovics, 1981), (ii) expected higher predation pressure during daylight for the surface 374 

populations and (iii) the negative phototaxis of the cave population, we predicted higher 375 

aggregation in the light than in the dark treatment, the effect being the strongest in the cave 376 

population. When we tested for aggregation without shelters, the results contradicted the 377 

prediction. We note that despite the significant population × light treatment interaction, the 378 

actual patterns seem somewhat weak. While the cave population aggregated more in light 379 

than in dark, the surface populations rather tended to aggregate more in dark than in light or 380 

showed no response. Hence, there are some indirect signs of the expected negative phototaxis 381 

in the cave population. However, the surface populations behaved in an unexpected way, and 382 

we can only speculate about the reasons. For instance, it is plausible that some social activity 383 

might take place in darkness. Surface A. aquaticus is intuitively assumed to have diurnal 384 

activity and they are indeed active during the light period. However, Andrikovics (1981) 385 

showed that the trappability of the species is three times higher during night than during 386 

daylight when using passive traps, suggesting higher movement activity during night. 387 

Previous experiments of ours reproduced these results under laboratory settings 388 

(unpublished). Hence, the species seems to show activity all around the clock. However, even 389 

though it is possible that some sort of increased social activity results in higher aggregations 390 

during night, but such activity among male individuals is yet unknown. Another potential 391 

explanation is increased male-male aggression during the day, but again, we have no data 392 

about it. Finally, it is possible that predation pressure is – contrary to our expectations – is 393 

higher during the night than during daylight. However, there is no data about the relative 394 

changes in predation pressure during a day. To answer this question, future research is to be 395 

done on the species’ ecology and behaviour in the wild. 396 

 397 
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In the case of aggregation under shelters, there was a weak trend for stronger aggregation in 398 

the dark in Gőtés Lake, while we found a strong pattern only in Malom Lake, where 399 

individuals aggregated under the shelters much stronger in the light than in the dark treatment. 400 

During the 20th century, guppies (non-native in Hungary) were introduced to the Malom 401 

Lake, and to our knowledge, there are no native fish species present and we never observed 402 

large insect predators (e.g. dragonfly larvae, Dytiscidae, etc.) in the lake. As a consequence, 403 

guppies are under negligible predatory risk and their density in the lake is high. We repeatedly 404 

observed groups of guppies feeding on A. aquaticus. As guppies are diurnal, A. aquaticus 405 

might suffer extremely higher predation pressure during the day, which explains the increased 406 

aggregation observed in the light treatment. 407 

 408 

Sheltering 409 

We predicted that the cave-adapted population, evolving under the lack of predation, will use 410 

shelters less than the surface populations under presumably different, but definitely significant 411 

predation risk. Previously, Fišer et al. (2019) showed that shelter-seeking behaviour exists in 412 

A. aquaticus, but their results about differences between cave and surface populations were 413 

inconsistent, as only one cave population showed the expected decrease in shelter use. Here, 414 

the prediction was supported, as A. aquaticus from the Molnár János Cave sheltered less than 415 

the surface populations. Obviously, we studied only one cave population, hence the results 416 

cannot be generalised, but it shows that the reduced shelter use in one cave population in Fišer 417 

et al.’s (2019) study is not an exception. 418 

 419 

We also predicted, based on similar grounds that is explained in the previous subchapter, that 420 

(i) shelter use will be higher under light than under dark conditions and (ii) the difference will 421 

be more pronounced in the cave than in the surface populations. Our findings support the first 422 
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prediction, but not the second. All populations sheltered more in the light treatment. 423 

Interestingly, the reaction norms were similar in all populations but the Malom Lake, which 424 

showed an elevated response. This pattern is congruent with our findings regarding 425 

aggregation under shelters, where we also reported an elevated response to light in Malom 426 

Lake. We believe that the explanation is the same: elevated shelter use and forming larger 427 

aggregations under shelters in light are adaptations to the high predation pressure induced by 428 

the diurnal guppies in Malom Lake. 429 

 430 

Habituation patterns 431 

All above discussed behaviours were recorded both in the beginning and at the end of the 432 

given observation period. We assumed that the beginning (being placed in the cylinder or an 433 

abrupt change in light conditions) of the experiment is perceived as stressful by the focal 434 

animals and thus they should behave differently compared to the end of the experiment after 435 

90 minutes elapsed without disturbance. According to Blumstein (2016), ‘Habituation is a 436 

process that leads to decreased responsiveness to a stimulus with repeated presentation and is 437 

often adaptive in that it makes it less likely that individuals will respond to harmless stimuli’.  438 

In contrast, a reverse mechanism, known as sensitization, intensifies behavioural response to 439 

constant stimulation (Bee, 2001; Stamps, Briffa, & Biro, 2012). If we treat being in a novel 440 

environment/situation as a permanent stimulus, the behavioural change during our experiment 441 

can be seen as a form of habituation (e.g. Herczeg et al., 2019). Hypothesizing that cave A. 442 

aquaticus adapted to the lack of predation will be less sensitive, we predicted that the cave 443 

population will express quicker/stronger habituation. Even though we detected a significant 444 

population × recording period interaction in all studied behaviours, the results are mixed. 445 

Regarding aggregation in the absence of shelters, the significant population variation in 446 

habituation revealed a weak pattern: populations with higher aggregation tended to increase, 447 
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while populations with lower aggregation tended to decrease aggregation along the 448 

observation period. Whether this pattern can be seen as support for sensitisation in some and 449 

habituation in the other populations (sensu Blumstein 2016) warrants further targeted studies. 450 

In aggregation under shelter, the Molnár János Cave population showed the strongest 451 

habituation by decreasing aggregation behaviour along the experiment. This can be seen as a 452 

pattern supporting our prediction. However, when testing the same question in sheltering 453 

behaviour, we found that the surface populations changed their behaviour more during the 454 

experiment by increasing sheltering (sensitisation), while the cave population showed only a 455 

small decrease (habituation). Even though our prediction was not supported, we believe that 456 

population variation in habituation/sensitisation governed by differences in predation pressure 457 

is an interesting idea worth pursuing in the future. 458 

 459 

Conclusions 460 

Taken together, we tested how does the adaptation to the predator-free, permanently dark cave 461 

environment affect aggregation and sheltering behaviours and their light-induced plasticity in 462 

A. aquaticus. We predicted that cave A. aquaticus will show decreased aggregation and 463 

sheltering, and stronger (negative) light-induced plasticity than surface A. aquaticus. We got 464 

mixed results. Only results about sheltering behaviour supported the predictions. However, 465 

we detected various population differences in aggregation, and light- induced plasticity in 466 

general, which were unexplained by habitat type. We conclude that population divergence in 467 

aggregation is explained by other factors than the ones differing systematically between cave 468 

vs. surface habitats. Besides further laboratory studies including more populations and also 469 

females, understanding this system warrants extensive field surveys to reveal the relevant 470 

factors in environmental variation. More behavioural tests will be also needed for the 471 

separation of the roles of sociability and aggression in the variation of aggregation behaviour. 472 
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