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Abstract

Isopoda, a widely distributed crustacean order, exhibits the unusual biphasic moulting in which the posterior part of the
exoskeleton constantly sheds before the anterior region. This paper presents a literature review on isopods, emphasizing the
association of the biphasic mode of moulting with the adaptation of isopods to different habitats and lifestyles. Owing to the
biphasic pattern of moulting, the two halves of the body take shifts to carry out essential functions such as oxygen consump-
tion, resorption of cuticular calcium, evading the risk of water loss, and compartmentalising the processes of moulting and
mating. Biphasic moulting is also advantageous for the parasitic isopods to cling to their host, regulate their feeding habitat
and taxis, resist water flow, withstand strong forces in their microhabitat and synchronize mating. Histology and enzyme-
linked immunosorbent assay (ELISA) experiments conducted in few isopods demonstrated the differential responses of
anterior and posterior body parts to neurohormones such as ecdysteroids. Taken together, the conserved phenomenon of
biphasic moulting in isopods should offer several advantages for adapting to diverse environments even though there is no

direct evidence.
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Introduction

Isopods are crustaceans belonging to the class Malacostraca
of phylum Arthropoda. Isopoda is possibly the most mor-
phologically diverse order of all the Crustacea (Hickman
et al. 2006). Isopods comprising over 10,300 species and
11 suborders have a cosmopolitan distribution worldwide
(Wilson 2008). Habitat-wise, isopods are marine, fresh-
water, or terrestrial (Kussakin 1979; Kensley and Schotte
1989; Brusca et al. 2007; Hornung 2011). They have also
inhabited deep-sea trenches, groundwaters, and deserts
(Bruce 2004; Hua et al. 2018). Considering the mode of liv-
ing, while many of the isopods are free-living (Oniscidae),
some are scavengers (Haploniscidae), grazers (Asellidae),
and temporary parasites (Gnathidae) to obligatory parasites
(Cymothoidae) (Wetzer 2001).
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Habitat and lifestyle-based phenotypic differences
in isopods

Isopods from different habitats and lifestyles follow a dis-
tinct pattern in their morphology, growth rates, reproduc-
tive strategies, digestive physiologies, and life spans (Hessler
et al. 1979). The schematic representation shows the sig-
nificant changes in their morphology and specific structural
features (Fig. 1). The majority of isopods possess dorso-ven-
trally compressed body with a vaulted dorsum (Cymothoida
and Sphaeromatidae), some are elongated or worm-like
(Anthuroidea), or flattened (Serolidae and Sphaeromati-
dae), and some others possess spines and nodules (Valvif-
era and Sphaeromatidae) (Brandt and Poore 2003; Wilson
2008). Differences in morphology and physiology are appar-
ent between isopods of terrestrial and aquatic inhabitants
(Schmidt 2008). The terrestrial oniscideans are generally
oval, broader at the fourth pereonite, and slightly vaulted
towards the distal end (Brandt and Poore 2003). The other
key differences include (1) smaller size, (2) water-resistant
cuticle, (3) diverse surface morphologies, (4) pleopodal
lungs, (5) water-conducting system, and (6) closed brood
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Fig. 1 Schematic representation
of the diverse morphologies and
structural features of isopods
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pouch (Edney 1954; Bursell 1955; Schmalfuss 1978; Hoese
1981, 1984; Holdich 1984; Cloudsley-Thompson 1988;
Schmidt and Wégele 2001; Horiguchi et al. 2007). Studies
on moulting demonstrated that the terrestrial isopods possess
sclerotized outer cuticles, unlike those in marine and fresh-
water environments (Csonka et al. 2018). The sclerotized
tegument assists as the primary protective barrier from their
environment (Hornung 2011).

A certain level of inter-population morphological diver-
gence is also evident in aquatic isopods. For instance, the
sub-order Asellota which includes freshwater and marine
isopods (especially deep sea), exhibits remarkable morpho-
logical diversity (Brandt and Poore 2003; Raupach et al.
2009). Though most freshwater forms are with a flattened
body, some are thin and vermiform with legs arising close
to the dorsal surface (Wilson 2008). According to Brandt
and Poore 2003, marine isopods are the morphologically
most diverse among the crustaceans. Shallow-water marine
species may be cryptically coloured or patterned (Guarino
et al. 1993). The deep-sea isopods have highly ornamented
and bizarre shapes to facilitate burrowing, and their antennae
are prominent (Hessler and Stromberg 1989; Bruce 2004).
For instance, Haploniscidae are pill-bug-like, Ischnomesidae
are elongated, Mesosignidae and Dendrotionidae possess
spines on the body, Nannoniscidae are slender, and Eury-
copidae are fat (Hessler et al. 1979). The deep-sea isopods
are scavengers with a modified morphology (Wilson and
Fenwick 1999). They possess large size ingesting organs
and ambit to cover wider areas for scavenging (Hessler and
Stromberg 1989). Deepwater isopods do not follow any spe-
cific pattern in colour. Their eyes are rudimentary compared
to freshwater, marine, and terrestrial habitats (Hessler and

@ Springer

Thistle 1975). For effective nutrient uptake, extensive modi-
fications in their feeding morphology, including the size of
the ingesting organs and ambit (the amount of space covered
during the activity of an individual), are required. Further-
more, these isopods need efficient metabolic approaches
to cope with the temperature fluctuation in the deep- sea
environment.

Characteristic differences were also noticed in the struc-
tural features of isopods located in different habitats. Among
the abdominal appendages, pleopods serve as oxygen uptake
organs, mainly those belonging to the mesic and xeric habi-
tats. In such isopod lineages, pleopods support the gas
exchange function and aid the propulsive movement of the
animals (Alexander 1988; Wigele 1992). In addition, these
terrestrial inhabitants do not require the water micro-envi-
ronment for any biological activities in any of their devel-
opmental stages (Broly et al. 2013). Instead, they can take
up moisture from the substratum through the uropods and
transfer it to their capillary water system, which acts as an
interface to transport the absorbed moisture from uropods
to the pleopods (Warburg 1968). All these different traits
of pleopod are supposed to have evolved during terrestrial
adaptation (Hoese 1982). In contrast, the capillary water sys-
tem is absent in aquatic isopods, though some transitional
species (e.g., Ligia) show the signs of developing a capillary
water system (Barnes 1932). Similarly, the rare forms of iso-
pods adapted to xeric conditions (Armadillo, Venezillo, and
Hemilepistus) did not possess the capillary water system,
as they are efficient in water vapour absorption (Warburg
1968; Harris et al. 2020). Significant differences were also
found in the brood pouches. In terrestrial isopods, the brood
pouch, apart from protecting the eggs against desiccation
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and microbes, also ensures an aquatic milieu with sufficient
fluid and oxygen (Mrak et al. 2012). In unfavourable thermal
conditions, the females can even remove their brood pouch
(Linsenmair 1989).

Reports on the morphological adaptations for parasitic
life are also available in isopods. The attachment site pos-
sibly influences the major changes in the body shape and
feeding mode of the host. The obligate parasites of the
sub-order Cymothoidea have a long, slender body tapering
towards both ends with an efficient contour that offers resist-
ance to water flow, and they can withstand strong forces in
their micro-habitats (Fig. 2). They possess a very heavily
thickened and calcified cuticle for protection and sharply
curved hooks (dactyli) on all pereopods allowing them
to attach to the host (Nagler et al. 2017; Kottarathil et al.
2019). Body segments become increasingly smooth, and the
number of setae is less than that of the free-living species.
Pereopod morphology changes, and decreasing numbers of
setae occur as the level of parasitism increases (Smit et al.
2014). The mouthparts become a distinct buccal cone with
strongly recurved and robust hooked setae or abrading ser-
rated scales (Poore and Bruce 2012). Unlike free-living iso-
pods, the eyes are more petite in parasitic forms, and the
body colour varying pale to red-pink (Aegidae) or white
to pale (Cymothoidae) (Poore and Bruce 2012). Generally,
the parasitic isopods do not swim, crawl, or leave their final
host (Poore and Bruce 2012). The aforementioned changes
in the body form of parasitic isopods from their free-living
counterparts might be due to the evolution of the former
from the latter. Further, the parasitic cymothoids were sup-
posed to have invaded from marine to freshwater habitats as
reflected from the increased body size (Poulin 1995).

Isopods also vary in their feeding habits and taxis. The
primitive Phreatoicideans feed on decaying leaves; other
freshwater-inhabiting asellotes are either detritivores or
omnivores with adjusted feeding morphology (Wilson and
Fenwick 1999). Isopods belonging to Sphaeromatidae are
omnivorous, and those of Cirolanidae are carnivorous and
have been observed with piercing and suctorial mouthparts

Fig.2 Morphological features
of marine parasitic isopods from
the voucher specimen collection
of our laboratory. a Catoessa
bosci; b Mothocya renardi; ¢
Nerocila depressa; d Nerocila
longispina; e Nerocila sundaica

(Wilson 2008). The maxillule of Lanocira has the form of a
large hook, eminently suited mouthparts to grasp small poly-
chaetes (Poore and Bruce 2012). Oniscideans and Asellidae
eat decaying leaves combined with bacterial endo-symbiont
(Zimmer 2002; Zimmer and Bartholmé 2003). Certain ter-
restrial isopods aggregate in dark, moist places, possibly due
to kinetic and tactic responses (Edney 1954). In some cases,
isopods can conglobate or curl up their bodies to form a ball
against various physical stimuli (Warburg 1968).

Habitat and lifestyle-based genetic differences
inisopods

Though most species might have undergone considerable
genetic changes, the biphasic moulting phenomenon is com-
mon to all isopods. The common biological changes (such
as variation in the moulting duration, seasonality, feeding
mode, etc.) observed in isopods of different habitats and liv-
ing modes prove this. To further test this, the present study
investigated the genetic variation of isopods belonging to
different habitats and modes of living. For this purpose, 16 s
rDNA sequences of 610 individuals representing different
habitats from marine, freshwater, terrestrial, and deep-sea,
and marine parasitic/free-living forms were retrieved from
the NCBI. Phylogenetic relationships inferred from these
isopod species showed a clear genetic difference between
the populations inhabiting the deep-sea, marine/freshwater,
and terrestrial habitats (Fig. 3). Also, it noticed clear genetic
segregation of the two different forms of marine population,
leading to parasitic and free-living life (Fig. 4). In order
to assess the substitution saturation of nucleotides, bioin-
formatics tools of DAMBE (Xia 2018) have been applied.
For the test of saturation, we followed the methodology by
Xia et al. (2003) and Xia and Lemey 2009. The assessment
result yielded Iss =0.488, which is significantly less than
Iss.c (= 0.787) (Fig. 3), and Iss=0.4331, which is signifi-
cantly less than Iss.c (= 0.6459) (Fig. 4), presuming a sym-
metrical topology indicating the sequence saturation. Based
on previous records, intra-habitat genetic diversity is evident

@ Springer
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Fig. 3 Phylogenetic tree of
isopods from different habitats.
The evolutionary history of

the isopods was inferred by
using the Maximum Likelihood
method and Kimura 2-param-
eter model (Kimura 1980). This
analysis involved 33 16 rDNA
sequences collected from NCBI
Evolutionary analyses were
conducted in MEGA X (Kumar
et al. 2018; Sayers et al. 2020).
16S rDNA from Penaeus mono-
don was taken as outgroup
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020

among the deep-sea isopods, wherein the population was
grouped into different genetic haplotypes (Barnard 1920;
Raupach et al. 2009). According to Porres et al. (2018),
the isopod population belonging to a single habitat showed
geographical variations. Even though habitat-reliant genetic

@ Springer

diversity is the prominent one in isopods when compared to
the geographical differences.
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Fig.4 Phylogenetic tree of
parasitic and free-living forms
of isopods. The phylogenetic
tree was inferred by using the
Maximum Likelihood method
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Discovery of biphasic moulting in isopods

Unlike monophasic moulting followed by most malacos-
tracan crustaceans (Decapoda, Stomatopoda, Amphipoda,
Cumacea, Mysidacea, etc.), moulting in isopods is bipha-
sic in which the posterior part of the exoskeleton is con-
stantly shed before the anterior part. Biphasic moulting
in the isopod was first discovered accidentally by Schobl
in 1880 while studying the reproduction of Porcellio sca-
ber Latreille, 1804. Following this, many researchers also
noticed this phenomenon in many isopod genera such as
Trichoniscus, Haplophthalmus, Porcellio, Oniscus, Armadil-
lidium and Asellus and Ligia (Weber 1881; Friedrich 1883;
Schonichen 1898; Verhoeff 1901; Pierce 1907; Zuelzer
1907; Tait 1911; Hank6 1912; Allee 1913). By the twentieth
century, commendable basic level information on biphasic
moult was generated in the terrestrial group, Oniscoidea,
intertidal species (Ligia oceanica (Linnaeus, 1767) and
Ligia exotica Roux, 1828), and marine genera (Sphaeroma,
Limnoria, Cirolana, Idotea, and Asellus) (Tait 1917; Numa-
noi 1934). According to Tait (1917), Herold (1913) was the
first to provide a general description of the biphasic moult.
In 1914, Aubin (Aubin 1914) explained the moult cycle in
the terrestrial isopod, Porcellio. Tait (1917) and Nicholls
(1931) observed the moult-related colour changes and cal-
cium carbonate storage in Ligia.

Characterization of biphasic moulting

As biphasic moulting occurs in two phases, a simple
microscopic observation of the isopod specimens would
clearly indicate their moulting status. The digital images
depicting the external morphology of the marine para-
sitic isopod Norileca indica (H. Milne Edwards, 1840)
while undergoing biphasic moult are given for reference
(Fig. 5). However, the proper stage-wise characteriza-
tion of the moult cycle is essential for determining the
growth rate in many crustaceans (Drach and Tchernig-
ovtzeff 1967; Luxmoore 1982). In isopods, most of the
moult cycle-related studies were focused on terrestrial
forms (Montesanto and Cividini 2018). In P. scaber,
Armadillidium vulgare (Latreille, 1804), Armadillo offici-
nalis Duméril, 1816 moult related differences in shape
and colour of sternites are common (Steel 1980; Suzuki
et al. 1996; Zidar et al. 1998; Hagedorn and Ziegler 2002;
Neues et al. 2011; Montesanto and Cividini 2018). Many
researchers have documented the moult related ultra-
structural changes in the integument of Oniscus asellus
Linnaeus, 1758, P. scaber, Titanethes albus (C. Koch,
1841), Ligia italica Fabricius, 1798 (Price and Holdich
1980b; Strus and Compere 1996; Ziegler 1997; Seidl and
Ziegler 2012; Vittori et al. 2012; Znidarsi¢ et al. 2012;
Vittori and Strus 2014). In L. italica and Ligia pallasii
Brandt, 1833, biphasic moult identification was made
using X-ray diffraction and CT scanning (Strus and Com-
pere 1996; Strus et al. 2019). In marine parasitic isopods,
such as N. indica (H. Milne Edwards, 1840), Mothocya
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Fig.5 Cymothoid (Norileca
indica) undergoing biphasic
moulting. a Adult male (size 15
mm) at intermoult stage in the
anterior half (ah) and posterior
half (ph) of the body, b adult
male (size 17 mm) at postmoult
in the posterior half (ph) and
late premoult in the anterior half
(ah) of the body

renardi (Bleeker, 1857), through light microscopic study,
the moult stage-related characteristic changes in the epi-
dermis and subsequent formation of juvenile appendages
were described (Sahadevan et al. 2020; Panakkool-Tham-
ban and Kappalli 2020). Stevenson (1961) demonstrated
the biphasic moult-associated tanning first time in the
terrestrial isopod A. vulgare based on the changes in the
level of polyphenol oxidase secreted from the tegumental
glands. In order to determine the exact moult stage at
which the polyphenol oxidase was secreted, it was neces-
sary to decipher the moult-related changes happening in
the two halves of the species. For this, Stevenson (1961)
followed the methods described by Drach (1939) and
Charniaux-Legrand (1952) with considerable modifica-
tions. Accordingly, the moult cycle was classified into
different stages such as A (postmoult stage), B (stage
soon after the postmoult where the calcification of the
cuticle is about to begin), C (the stage of progressive
hardening), and D (preparative stage for moulting). D was
further divided into D; when the new claw is formed; D,,
the new claw becomes amber-coloured; D5, no visible
change and D, when the cuticle is about to shed. In Asel-
lus aquaticus Linnaeus, 1758, the aesthetasc sense organs
on the antennules were used to identify the moult stages
(Heimann 1984). According to the recent reports based
on the light microscopic study of the appendages in the
marine parasitic isopods, N. indica and M. renardi, the
precise detection of moult stages is possible (Sahadevan
et al. 2020; Panakkool-Thamban and Kappalli 2020). In
N. indica, the maxillule and the exopodite (of the uro-
pod) have been identified as the appropriate appendages
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showing precise moult-related changes from the anterior
and the posterior parts, respectively, which enables the
detection of moult stages of both body parts simultane-
ously (Sahadevan et al. 2020). From the studies described
above, it is understood that there is no universal proce-
dure to characterise the biphasic moult stages in isopods.
Hence this aspect invites more attention since precise
moult stage identification is crucial to carry out advanced
studies on moulting at physiological, endocrinological,
and molecular levels.

Biphasic moulting pattern is uniform in all isopods
irrespective of their habitats and lifestyles

All isopods evolved exhibit biphasic moulting irrespec-
tive of their habitats, lifestyle, and different forms (Wil-
son 2009). An exception to this was reported in Antarctic
isopod Glyptonotus in which moulting was monophasic
(George 1972). The sub-order Phreatoicidea is consid-
ered as the most primitive isopod group originating in the
marine environment (Brusca and Wilson 1991); they suc-
cessfully colonized freshwater, and terrestrial ecosystems;
some are the inhabitants of the groundwaters and others
of the abyssal benthic region while some live in the desert
(Wilson and Johnson 1999; Poore and Bruce 2012). To
invade entirely different habitats, the isopod has undergone
several morphological and physiological changes (Wetzer
2001; Wilson and Edgecombe 2003; Broly et al. 2013).
Despite the morphological and physiological changes,
no other evidence shows a change in the mode/pattern of
moulting in any of the isopods beginning from the ancient



Biologia

Phreatoicidea to the present Cymothoidea. The fossil of
the cirolanid isopod, Cirolana garassinoi Feldmann, 2009
lived during the late Cretaceous period showed the pres-
ence of three pairs of dermoliths (sites of mineral/calcium
storage) at the anterior body part and a thin exocuticle
which indicate that the isopod was at the premoult stage
(Feldmann 2009). From this evidence, it is presumed that
these marine isopods were already equipped with the cal-
cium-storing mechanism to invade the terrestrial habitat
in the late Cretaceous period itself.

Duration of biphasic moult cycle/ moulting
is different among the isopods

Although biphasic moulting is common to all the isopods,
its duration varies among the species. Most of the studies
reported the shedding of the anterior exoskeleton within
17-40 h after shedding the posterior part. For instance,
in the sand beach isopod, Excirolana chiltoni Richardson,
1905, the reported duration of biphasic moulting is 25 h
(Klapow 1972). In the terrestrial isopod A. officinalis, the
duration of the premoult phase is 12 days, and the biphasic
ecdysis is 1.5 days (Montesanto and Cividini 2018). In the
common woodlouse (O. asellus), the duration of the biphasic
moulting is 1.8 days, and in the case of P. scaber the period
is 17-24 h (George and Sheard 1954; Price and Holdich
1980b). Marcus (1990) reported that for the freshwater iso-
pod A. aquaticus, the anterior ecdysis occurred only after
24 h upon the posterior ecdysis.

In the sub-terranean isopod 7. albus, the duration of its
biphasic moult ranges from one day to several days, and the
anterior ecdysis follows the posterior ecdysis after 3-5 days.
The duration of the premoult is also extended to approxi-
mately seven weeks (Vittori et al. 2012). Despite the changes
in the duration of a moult cycle, certain isopods also dis-
play a seasonal-dependent variation in the number of moult
cycles. In the marine cymothoid N. indica, there is a con-
siderable decrease in moulting events during the monsoon
season compared to the summer and post-monsoon/winter
season (Sahadevan et al. 2020).

Behavioural changes related to biphasic moulting
inisopods

Table 1 listed the behavioural changes associated with bipha-
sic moulting in isopods reported from different habitats.

Physical/ motivational behaviours

During the moulting process, the isopods can move to reduce
the rate of predation (Price and Holdich 1980a, 1980b). The
exo-receptors of one-half of the body are always functional
together with the activity of the tegumental glands (Gorvett

1956; Price and Holdich 1980a). Biphasic moulting is
unavoidable in many parasitic isopods as they utilize this
approach to cling to their host. Pereopods emerging from
anterior and posterior regions help cling to the host when
either region is moulting (Kottarathil et al. 2019). On the
other hand, biphasic moulting is not a requisite in the manca
stage as the calcification is relatively meager as their exo-
skeleton appears very soft (Mrak et al. 2014).

Isopods exert certain motivational behaviour like pushing
their body upright by stretching their moulted half upward,
possibly protecting their newly moulted region, prevent-
ing it from touching the substratum as it may cause some
damage to the animal (Vittori et al. 2012). In some cases,
the mating was seen co-occurring with the posterior moult-
ing (Shuster 1989). In females, the oviduct opens outward
through the base of the 5th or 6th pereopod at the posterior
part of the body. Though not common, in some terrestrial
isopods, as soon as the posterior exuvium sheds, the animal
feeds on the exuviae to cope with the loss of calcium from
the body (Steel 1993). This behaviour, however, is not seen
in marine forms (Alikhan 1972). Sparrevik (1999) reported
cannibalism in Saduria entomon (Linnaeus, 1758), i.e., the
non-moulting individuals feed on those undergoing moulting
if they are size-wise smaller than the predators.

Physiological behaviours

Terrestrial isopods face the risk of transpiration, especially
during the moulting event. For the rapid water loss recov-
ery, they take up either water or water vapour (Hoese 1981;
Wright and Machin 1990, 1993). Biphasic moulting might
be helpful to conserve the water content as the cuticle will
always be present on one-half the body, thereby reducing
the rate of transpiration. In Idotea balthica Pallas, 1772, two
peaks of oxygen consumption, one during the posterior ecd-
ysis and another during the anterior ecdysis, were reported
(Bulnheim 1974). The studies on A. vulgare reported the
minimum haemolymph pressures and oxygen consump-
tion rates during the moulting period, especially during the
posterior ecdysis (Alikhan 1983). Through biphasic moult-
ing, the anterior half of the isopod takes the shift to absorb
the required amount of oxygen while the posterior part is
undergoing moulting. In another report by Chiang and Steel
(1986), the activity of the sinus gland in O. asellus increases
at the postmoult stage in both anterior and posterior regions.
Whiteley and El Haj (1997) also noted a difference in the
rate of muscle protein synthesis between the two halves in
Idotea rescata Stimpson, 1857. Unlike other crustaceans,
isopods can feed during the period of biphasic moulting.
For instance, Porcellio laevis Latreille, 1804 continues feed-
ing when it undergoes posterior moulting. However, during
anterior moulting, it depends on the stored hepatopancreatic
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lipids (Alikhan 1972) and epithelial cell glycogen reserves
for the energy requirements (Strus and Compere 1996).

According to Vernet and Charmatier-Daures (1994),
biphasic moulting favours calcium saving through recy-
cling; when the posterior half is at premoult, the integu-
mental calcium from this part is withdrawn and store at the
anterior sternites. When the posterior half completes moult-
ing, the calcium is re-absorbed from the anterior half and
re-calcify the posterior part. This physiological behaviour
is much essential for terrestrial isopods (Montesanto and
Cividini 2018). In Ligia, the calcium present in the endo-
cuticle is cycled between the anterior and posterior parts
(Numanoi 1942). Studies in 7. albus showed the signs of
sternal calcium deposits in the apical plasma membrane of
their epidermal cells during cuticle formation (Vittori et al.
2012). Similar reports are also available in other terrestrial
isopods (Price and Holdich 1980a; Ziegler 1997, Strus and
Blejec 2001). In the haemolymph of P. scaber, the amount
of Ca** is significantly increased by 13%, 19%, and 18% dur-
ing premoult, intermoult, and postmoult, respectively, which
might be due to the resorption of cuticular calcium (Ziegler
and Scholz 1997). But in some isopods, either gastroliths or
hepatopancreas act as the storehouse or supplier of calcium
(Numanoi 1942). In freshwater isopods, biphasic moulting
may be more beneficial to meet the calcium demand as this
shows wide fluctuation in freshwater (Greenavvay 1985).
Biphasic moulting may also favour reproductive function:
in Natatolana borealis Lilljeborg, 1851, N. indica, and M.
renardi, the oostegites are formed during biphasic partial-
parturial ecdysis (Johansen 1996; Kottarathil and Kappalli
2019; Panakkool-Thamban and Kappalli 2020). Females can
rejuvenate their genitalia after the biphasic moult without
interfering their reproduction (Suzuki 2002).

Biochemical and molecular factors defining
the mechanism of biphasic moulting - Future
perspectives

Studies on the neuronal and hormonal control of biphasic
moulting are limited, and most of the available reports are
based on a terrestrial isopod O. asellus. Matsumoto (1959)
suggested the homologous nature of beta cells identified
from this species with the X organ of decapod crustaceans.
Carefoot (1993) demonstrated the connection of beta cell
with the sinus glands. Chiang and Steel (1984, 1985) histo-
logically demonstrated the presence of neuro- secretory ter-
minals in this species (O. asellus). They (Chiang and Steel
1989) also found a decreased level of action potential from
the sinus gland while the animal was at the late premoult
stage with maximum moulting hormone, ecdysteroids. This
supports the fact that the moult-inhibiting hormone secreted
from the sinus gland is inversely correlated with the ecdys-
teroids (Martin et al. 1979; Lachaise et al. 1993). Despite
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this information, no satisfactory explanation is available on
the question of how it controls the biphasic moulting.

According to the researchers, the resorption of calcium
from the old cuticle is under the control of the ecdyster-
oids (McWhinnie et al. 1972; Kleinholz and Keller 1979).
But the role of this hormone in the calcification of the post-
moulted part is not clear. However, the role of ecdyster-
oids in triggering the premoulting and ecdysis events was
experimentally proven by measuring its titre with respect
to moult cycle stages. Reports are available for free-living
terrestrial isopods A. vulgare (Suzuki et al. 1996) and O.
asellus (Steel and Vafopoulou 1998), and also for a parasitic
isopod N. indica (Sahadevan et al. 2020). Steel and Vafo-
poulou (1998) in their experiments in O. asellus showed
that when the ecdysteroids level was maximum, there occurs
cuticle deposition in the posterior part indicating the dif-
ferential response of anterior and posterior body parts to
the ecdysteroids released at one time. They speculate that
even though both the anterior and posterior epidermal cells
receive the signal for simultaneous secretion of the cuti-
cle, the response might be consecutive. According to Steel
(1977), this calcium translocation is controlled by the brain
hormones stored in the sinus gland for timely release as they
could record the increased electrical activity of this gland
after each partial ecdysis.

In a marine parasitic isopod (N. indica), the level of
ecdysteroids is maximum when the posterior half is at the
late premoult stage. The titre, however, showed a dramatic
decrease when the anterior part attains late premoult, indi-
cating that ecdysteroid receptor activity was initiated at
the posterior half first, then at the anterior half (Sahadevan
et al. 2020). This time difference in the hormone receptivity
of the two halves might be one of the reasons for biphasic
moulting. This also indicates that the nervous system does
have only the initial control over ecdysteroids production
when the posterior part undergoes premoult agreeing with
the observation of Steel and Vafopoulou (1998). Since the
isopods possess the open haemocoel, released ecdysteroids
may be accessed equally by anterior and posterior body
parts. To demonstrate this hypothesis, more research in this
line is required. Studies also showed that cellular uptake of
ecdysteroids involves the activity of Na*/K*-ATPase (Spin-
dler and Spindler-Barth 1989). Presumably, the animal con-
trols the expression of the Nat/K*-ATPase differently in the
two halves. Since as a steroid hormone, ecdysteroids need
no pump to enter the target cell. So a comprehensive study
related to the expression of ecdysteroid receptors during
biphasic moulting is also necessary.

During the biphasic moult of N. indica the posterior half
becomes wider first, followed by the anterior part indicating
the differential growth of muscle (Sahadevan et al. 2020).
The differential growth of the muscle in two halves of the
isopod body and its hormonal control also needs attention.
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According to Whiteley and El Haj (1997), the rate of pro-
tein synthesis in the anterior part is higher than that of the
posterior part; once the animal completes postmoult in the
anterior half, the rate of protein synthesis becomes equal
in both halves. They found that mRNA level of actin and
myosin remained the same over the biphasic moult, which
leads to the conclusion that the change in expression might
have occurred only at the translation level, not in the tran-
scription rate. More clearly, though mRNA for the muscle
protein is synthesised in equal amounts, its translation into
protein happened at two different times when the two halves
moulted. The question remains: why is the protein synthesis
rate higher in the anterior part compared to the posterior?
A molecular-level study about the translation mechanism is
also needed for answering these questions. Another impor-
tant finding was that in 1. rescata, the rate of protein syn-
thesis increased with a rise in temperature; i.e., transcrip-
tion and translation are directly proportional to temperature
(Whiteley and El Haj 1997). This may be the reason behind
the seasonal moulting in some isopods. Cymothoid-like N.
indica shows a higher moulting rate in the summer than in
the monsoon season (Kottarathil et al. 2019).

Conclusions

Reviewing the biphasic moulting in isopods enabled us to
reach the following conclusions. 1) Isopods belonging to
different habitats and lifestyles varied both phenotypically
as well as genetically. 2) Despite the minor moult-related
changes in the physical and physiological behaviours, the
general pattern of biphasic moulting is conserved in all iso-
pods, either in aquatic (including the parasitic) or terrestrial
inhabitants. 3) The conserved biphasic moulting phenom-
enon has varying functional significance to favour the suc-
cessful adaptation of isopods inhabiting a wide range of hab-
itats and lifestyles. The application of advanced molecular
studies would help address the exact mechanism of biphasic
moulting and its control in isopods.
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