Insects in dead wood

Sylvie Barbalat

Lammi, August 9th 2016

Don't mistake...

a wood plantation for a forest

wood plantation artificial biotope close to a field forest natural and complex ecosystem

Wood plantation

- Homogenous structure
- No old trees
- No dead trees
- No clearings
- One planted tree species

Forest

- Heterogenous structure
- Old trees
- Dead trees
- Clearings
- Many tree species determined by biotope conditions

... and all intermediate forest types between these two extreme cases

Succession of different stages in a primeval forest

- Primeval forest cycle (Oak, *Quercus sp.*): about 600 years;
- Senescent and terminal stages last about 200 years (occupation area of these stages: 1/3 of the total forest area)
- Juxtaposition of these various stages and formation of a mosaic
- Forest is a dynamic habitat
 - "internal dynamics" depending on tree life stages
 - "external dynamics" depending on external events (storms, fires, snow, floods etc.)

Insects in dead wood: 3 main orders

http://insects.nature4stock.com

Hymenoptera (wasps, ants and bees)

> Coleoptera (beetles)

S. Barbalat

Diptera (flies and gnats)

Insects in dead wood: 2 seconary orders

Lepidoptera (butterflies and moths)

Heteroptera (true bugs)

Insects in dead wood: can be classified according to:

- systematics
- their dependance for dead wood (obligate or facultative)
- the stages of decomposition of wood (fresh dead wood to completely decayed wood)
- the place they are found in (under the bark, in the wood, in the branches, in the stem, in the roots)
- their diet (cambium, wood, decayed wood, preys...)

Dying and fresh dead wood Examples of species feeding on sapwood under the bark

Anthaxia candens Coleoptera Buprestidae Acanthocinus aedilis Coleoptera Cerambycidae

Ips typographus Coleoptera Curculionidae Scolytinae

Dying and fresh dead wood Examples of species feeding on sapwood under the bark

Lamprodila festiva Coleoptera Buprestidae

Dying and fresh dead wood Examples of species feeding on sapwood under the bark

Coraebus fasciatus Coleoptera Buprestidae Female lays an egg at the top of a healthy twig.
Larva bores a 1,5 m long gallery towoards
branch base.
Mature larva bores a circular gallery around
branch base => death of the branch

=> new biotope for other dead wood insects

Dying and fresh dead wood Examples of species feeding on wood in stems

Cerambyx cerdo Coleoptera Cerambycidae

Plagionotus detritus Coleoptera Cerambycidae

Rosalia alpina Coleoptera Cerambycidae

Dying and fresh dead wood Other insects use dead stems as nests

Camponotus ligniperda Hymenoptera Formicidae

Xylocopa violacea Hymenoptera Apidae

Fungus-infested wood Insects living in wood, feeding on fungi

Platypus cylindrus Coleoptera Platypodinae

Urocerus gigas Hymenoptera Siricidae

Elater ferrugineus Coleoptera Elateridae

Osmoderma eremita Coleoptera Scarabaeidae

youtube.com/watch?v=4YQOOfzrZSk

Decayed wood Insects living in rotten stumps and roots

Lucanus cervus Coleoptera Lucanidae

Predators of dead wood insects

Elater ferrugineus Coleoptera Elateridae

Thanassimus formicarius Coleoptera Cleridae

Xylophagus ater Diptera Xylophagidae ^{Film on}

https://en.wikipedia.org/wiki/Xylophagidae

Parasitoides of dead wood insects

Urocerus gigas (Giant Woodwasp) Hymenoptera Siricidae naturamediterraneo.com

Rhyssa persuasoria (Sabre Wasp) Hymenoptera Ichneumonidae

Film on https://en.wikipedia.org/wiki/Rhyssa_persuasoria

- ... and many others:
- in bird nests
- on dung
- on sap
- using wood as construction material
- on wounds
- using dead wood as hibernation sites
- submerged wood...

Biodiversity, let's talk about insects

Nearly 60 % of all known species are insects

Nordic countries : 3946 saproxylic insect species

Coleoptera : 1447 **Diptera** : 1550 Hymenoptera: 803 Lepidoptera: 66 Hemiptera : 26 Thysanoptera: 23 Collembola 27 Raphidioptera: 4

Ecological roles of dead wood insects

Ecological roles of dead wood insects

Decomposers unrecognized workers

- Organic matter decomposition
- Release of nutrients contained in dead organic matter
- Provision of nutients required by plant growth
- A very efficient association between:
 - Invertebrates (organical matter fragmentation)
 - Microorganisms (chemical decomposition)

Decomposition chains

Importance of fragmentation

Ex. cube : each side is 10 cm long, unfragmented: Volume = 1000 cm^3 Available surface for decomposers = $6 \times 100 \text{ cm}^2$ = 600 cm^2

Ex. cube : each side is 10 cm long, fragmented in 1000 cubes of 1 cubic cm: Available surface for decomposers = $6 \times 1 \text{ cm}^2 \times 1000$ = 6000 cm^2

Ecological roles of dead wood insects

- Boosting wood decomposition ex. Ukraine:
 - Pine tree (*Pinus sp.*) decomposition:
 - 12 years without invertebrates
 - 7 years with invertebrates
 - Oak tree (Quercus sp.) decomposition:
 - 20 years without invertebrates
 - 12 years with invertebrates

Mamaev and Ghilarov in Dajoz 1980

Stump 0-3 years

Agrilus viridis Buprestidae

Chrysobothris affinis Buprestidae

Rhagium mordax Cerambycidae

Stump 4-7 years

Anobium sp. Anobiidae

Melasis buprestoides Eucnemidae

Uleiota planata Cucujidae

Stump 8-11 years

Dorcus parallelopipedus Lucanidae

Helops coeruleus Tenebrionidae

Pyrochroa coccinea Pyrochroidae

Ecological roles of dead wood insects

- Preys for predators (vertebrates and
 - invertebrates)
- Habitat builders for wood dwelling invertebrates and for microorganisms
- Pollinators
- Feces producers (for coprophagous species)
- Bodies producers (for necrophagous species)

Present situation of dead wood insects

- High number of rare species
- Germany: 60% dead wood beetles on the red list
- Many species have already disappeared in large areas
- Relict species in a few isolated reservoirs
- Old trees without successors
- « Recreating » suitable habitats will last for centuries

Conservation measures

- Protect old forests with « relict » species
- Maintain and/or create corridors between forests
- Enhance structural diversity within a managed forest:
 - Stepped edges
 - Clearings
 - High number of tree species of different ages
 - Old and successor trees
 - Dead wood (different types)

Natural clearings

Windthrows

Stepped edges

Half open habitats

Wooded meadows

Orchards

Floodplains

Tree species diversity

Habitat diversity

Old trees

...and their successors

Conclusion (I)

- General measures to enhance dead wood insects are possible without species knowledge.
- Targeted measures to protect specifically threatened species require a good species knowledge, including species autoecology and localisation.

Conclusion (II)

- Biodiversity conservation must not only aim at protecting a large number of species but at conserving rare and threatened species.
- Species knowledge is essential!

Willkommen im Nationalpark Bayerischer Wald

Spruce bark beetle as national park manager

The example of the national park « Bavarian forest »

free summary of a presentation by Karl Friedich Sinner at a symposium in Chambéry (F) 2008

(photos Nationalpark Bayerischer Wald)

Grenzenlose Waldwildnis im ersten deutschen Nationalpark

"Natur Natur sein lassen" lautet die Philosophie, und in der Tat, nirgendwo zwischen Atlantik und ural dürfen sich die Wälder mit ihren Mooren. Bergbächen und Seen auf so großer Fläche nach ihren ureigenen Gesetzen zu einer einmaligen wilden Waldlandschaft, einer "grenzenlosen Waldwildnis", entwickeln.

- Park created in 1970, enlarged in 1997 to 24'000 ha.
- Bordering Sumava NP 70'000 ha.
- 99 % of the area is a forest but there are also peat bogs, ponds, lakes and pastures
- No human activity on 11'000 ha.

Spruce bark beetle : pest or architect ?

www.skogoglandskap.no

Understanding the role of this species

- Family Curculionidae Scolytinae
- About 120 Scolytinae species in central Europe
- 1 celebrity: the spruce bark beetle (*Ips typographus*)
- The spruce bark beetle colonizes almost exclusively weakened or freshly dead spruces (*Picea abies*)
- In case of pullulations, it can also colonize healthy trees

Impact of outbreak on fauna

Capercaillie / (*Tetrao urogallus*)

- Irregular structures created by outbreak offer hiding places
- Increase of blueberry, food of capercaillie

Impact of outbreak on fauna

Otter (Lutra lutra)

More light on streams => Increase of water temperature => Increase of nutrients in water => Increase of fish populations => Increase of otter populations

Impact of outbreak on vegetation

- Excellent spruce regeneration because :
 - No wood removal
 - Rich soil
 - Much light

Impact of outbreak on flora and fauna Increase of dead wood related organisms

© - josef hlasek www.hlasek.com Prionus coriarius 6672

Conclusions

- Maximizing biodiversity is not the main aim.
- When natural processes can occur, typical fauna and flora of mountain habitats are enhanced.
- The spruce bark beetle is considered as the most structuring species regarding biodiversity.
- Large untouched areas allow occurence of natural processes.

Conclusions

- In the present case, there are no economical aim. This enables to observe processes which are impossible to see in a managed forest.
- Outbreak is a source of natural regeneration.

Any question ?