Integrative taxonomy uncovers hidden species diversity in woodlouse hunter spiders (Araneae, Dysderidae) endemic to the Macaronesian archipelagos

NURIA MACÍAS-HERNÁNDEZ, PEDRO OROMÍ, AND MIQUEL A. ARNEDO

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness.

- Q1. Au: (GTR+G fro RAxML) Should 'fro' read 'for' or 'from'?
- Q2. Au: Berland & Denis, 1946: 224 is missing from the reference list.
- Q3. Au: Check data in row 'Ta' of Table 8 ranges back to front/repetitive.

Q4. Au: No asterisk in the figure – does this refer to the large crosses?

Research Article

10

15

20

25

Integrative taxonomy uncovers hidden species diversity in woodlouse hunter spiders (Araneae, Dysderidae) endemic to the Macaronesian ⁵ archipelagos

NURIA MACÍAS-HERNÁNDEZ^{1,2}, PEDRO OROMÍ¹ & MIQUEL A. ARNEDO²

¹Departamento de Biología Animal, Universidad de La Laguna, Universidad de La Laguna, 38206 La Laguna, Tenerife, Canary Islands ²Biodiversity Research Institute and Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, 08020, Barcelona, Spain

(Received 17 August 2010; revised 20 October 2010; accepted 21 October 2010)

The development of molecular techniques as a taxonomic tool and their integration with information provided by other disciplines, has enhanced species discovery, facilitated species delimitation and produced invaluable data for inferring species phylogenies. Here, we provide an example of how DNA sequence data, together with morphometric, distributional and ecological information, assist in identifying and diagnosing previously overlooked lineages. The nocturnal, ground-dwelling spider genus Dysdera has colonized all the Macaronesian archipelagos, and has undergone a major diversification in the Canary Islands. A recent molecular phylogenetic analysis of Dysdera species from the eastern Canary Islands revealed deep genetic divergences among some populations, suggesting the existence of cryptic taxa. Here, we combine data from mitochondrial and nuclear loci with morphological and ecological evidence to delimit and formally describe three previously overlooked species: D. aneris sp. nov., endemic to the Salvage Islands; D. mahan sp. nov., distributed along coastal habitats of Lanzarote, north of Fuerteventura and adjacent islets; and D. simbeque sp. nov., restricted to two valleys in northern Lanzarote. Molecular markers provide key information that allows apparent morphological polymorphisms to be used as diagnostic features of evolutionarily independent lineages. Dysdera mahan sp. nov. is unique among the Canarian Dysdera in that it is found in the intertidal zone on pebbled beaches. Low levels of genetic variability and genital differentiation associated with relatively high somatic divergence suggest that speciation in D. mahan sp. nov. was driven by a selection of phenotypic traits that are adaptive to this rare environment. Separate analyses and statistical tests revealed phylogenetic incongruence between mitochondrial and nuclear genes, probably as a result of incomplete lineage sorting. The temporal framework for the origin and diversification of the new species inferred from the molecular data corroborates former hypotheses on the late Pliocene origin of the present-day biota of the Salvage Islands.

30 **Key words**: Canary Islands, cryptic species, data set incongruence, Fuerteventura, incomplete lineage sorting, Lanzarote, molecular phylogeny, Salvage Islands

Introduction

Species are the basic units of taxonomy and the subject of evolution (Wiley, 1981; Ereshefsky, 1992). However, few ideas in biology have revealed themselves as more elusive to define or have sparked hotter debates than the species concept (Ereshefsky, 1992). The plethora of species definitions available in the literature (Harrison, 1998) has been grouped

40 into those that consider species as reproductive communities and those referring to species as evolutionary lineages (Templeton, 1994). The reproductive and evolutionary perspectives on species have been reconciled by considering the lineage-based evolutionary species concept as a general

Correspondence to: Miquel A. Arnedo. E-mail: marnedo@ub .edu

ISSN 1477-2000 print / 1478-0933 online © 2010 The Natural History Museum DOI: 10.1080/14772000.2010.535865 theoretical definition of species and treating other concepts
as operational tools for species recognition and delimitation
(Mayden, 1997; de Queiroz, 1998). Some authors, however,
go further and suggest that species should not be defined
on the basis of specific necessary properties, as implied by
most definitions, but that such properties should instead be
used as a line of evidence to infer species limits (Sites &
Marshall, 2003, 2004). Consequently, the focus on species
concepts has recently shifted towards the development of
methods to detect species boundaries (Wiens & Penkrot,
2002 and references therein; Morando *et al.*, 2003; Sites &
55 Marshall, 2003, 2004).

It has been suggested that traditional species delimitation based on gross morphological features underestimates and simplifies biodiversity (Mayden, 1997; Bickford *et al.*,

- 60 2007). The development and popularization of molecular techniques have favoured the use of DNA sequence data to test traditional morphology-based taxonomies (Vogler & Monaghan, 2007 and references therein). The inclusion of molecular data in taxonomy has aided species delimita-
- 65 tion and diagnosis (Sites & Marshall, 2004; DeSalle *et al.*, 2005), enhanced the discovery of cryptic species (Bickford *et al.*, 2007), and extended species identification beyond complete adult specimens (Hebert *et al.*, 2003). However, the definition of species boundaries requires an integrative
- 70 method that includes multiple lines of evidence, such as those provided by classical morphology-based taxonomy in addition to molecular, ecological, behavioural and geographical information (Stockman & Bond, 2007; Bond & Stockman, 2008).
- 75 The Macaronesian biogeographic region is included within the Mediterranean biodiversity hotspot and is one of the most important areas worldwide for conservation (Myers *et al.*, 2000). Arthropods are among the most diverse and highly endemic organisms in Macaronesian terrestrial
- 80 ecosystems. Despite a 150-year-old tradition of carrying out taxonomy and biotic surveys, new species of arthropods continue to be found in Macaronesia at a rate of approximately 25 to 200 new taxa per decade (Izquierdo *et al.*, 2004; Borges *et al.*, 2005, 2008). Although increases in
- 85 human resources and funding for bio-inventories have enhanced species discovery within the region, the use of DNA-based techniques has also contributed to increase the number of species identified. In the Canaries, genetic distinctiveness has been used to describe a new endemic species
- 90 of the grasshopper genus *Arminda* (Hochkirch & Gözig, 2009), to detect cryptic species among the *Palmorchestia* landhoppers (Villacorta *et al.*, 2008), and to corroborate species delimitation in morphologically similar species of the *Halophiloscia* coastal woodlice (Taiti & López, 2008),
 95 to cite just a few examples.

The nocturnal wandering hunter spider genus *Dysdera* Latreille, 1804 is a conspicuous component of the Mediterranean ground-dwelling arthropod fauna that is generally associated with warm and wet ground habitats. *Dysdera* is

- 100 one of the largest genera in the Mediterranean basin, with nearly 250 described species (Platnick, 2010), a fifth of which are endemic to the Macaronesian archipelagos. The genus is unevenly distributed across the main archipelagos: the Canary Islands harbour almost 50 endemic species
- 105 (Arnedo et al., 2007), while Madeira has five species (Wunderlich, 1994) and Cape Verde (Berland, 1936), the Azores (Arnedo, unpubl. data) and the Salvage Islands (Arnedo et al., 2000) have one each. Cladistic analyses of morphology and mitochondrial DNA sequence data (Arnedo et al., 2000)
- 110 2001) suggested a close relationship of the Cape Verde species with those from the Canaries, and an independent colonization of the Azores. Relationships of the Madeiran taxa remain largely unresolved. Canarian endemics, on the other hand, are more likely the result of a single colonization

Fig. 1. Map with the sampling localities and the distribution of the three new species described. Code numbers correspond to those in the locality list in Appendix 1 (see supplementary material which is available on the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...).

event, with the only exception being *D. lancerotensis* Si-115 mon, 1907, which colonized the eastern Canaries independently (Bidegaray-Batista *et al.*, 2007; Macías-Hernández *et al.*, 2008).

The eastern Canary Islands (Fig. 1), including Fuerteventura, Lobos, Lanzarote and the Chinijo islets are home to 120 five endemic *Dysdera* species in addition to the aforementioned *D. lancerotensis*, one of which is also found in the Salvage Islands. A recent study of the phylogeny and evolution of these endemic species (Macías-Hernández *et al.*, 2008) based on DNA sequence data revealed the existence 125 of deeply divergent lineages that had gone unnoticed in previous taxonomic revisions (Arnedo *et al.*, 2000). The eastern Canaries are the oldest islands of the archipelago (Fuerteventura is 22 million years old; Coello *et al.*, 1992) and the closest to the mainland (northwest Africa). 130 These two factors have shaped their terrestrial ecosystems which, compared with the remaining Canary Islands, are xerophilic, due to long-term erosion resulting in low altitudes (which prevents them from capturing the humid trade

- 135 winds from the northeast) and to the arid, dusty winds blowing in from the Sahara. The eastern Canaries are an exposed part of a continuous volcanic ridge, and the islands have been connected by land bridges in the past as a result of eustatic sea-level changes. The Salvage archipelago includes
- 140 two small islands (Selvagem Grande and Selvagem Pequena) and one islet (Ilhéu de Fora) that are located 165 km north of the Canary Islands and 300 km south of Madeira island (Fig. 1). The subaerial phase of the archipelago dates back to 21 million years ago (Mya) and was followed by
- 145 two post-erosional periods (12–8 and 3.4 Mya) separated by gaps in volcanic activity. The archipelago was beneath sea level during volcanic quiescence periods due to erosion and eustatic sea level changes (Geldmacher *et al.*, 2001). The present-day terrestrial ecosystems probably originated 150 after the last post-erosional volcanic episode.

after the last post-erosional volcanic episode.
 In the present study, we adopted a unified species concept,
 i.e. species are independently evolving metapopulations (de Queiroz, 2007), and we used multiple lines of evidence (morphology, DNA sequence data, ecology, distribution) to

- find and delimit previously overlooked species. We elaborated on the phylogenetic results of Macías-Hernández *et al.* (2008) to re-examine morphological evidence and formally describe three new endemic species. We present new molecular and morphological data of the new species from
 the Salvage archipelago to delimitate and further investigate
- 160 the Salvage archipelago to delimitate and further investigate its origins.

Materials and methods

Taxonomy

- 165 Specimens were examined with Leica MZ95 and Leica MZ16A dissection microscopes, the latter was equipped with a Nikon DXM1200 digital camera. Digital microscope images were edited using the Auto-Montage software package. Digital illustrations were generated following the
- 170 guidelines provided in Coleman (2003) with the assistance of a WACOM digitizer board and Adobe Illustrator 10 and Photoshop 8.0.1 software. Male palps were detached, cleaned by ultrasound, critical-point dried and then coated for examination using a HITACHI S2300 scanning electron
- 175 microscope at the Serveis Científico-Tècnics of the Universitat de Barcelona. Female vulvas were removed with the aid of needles, and the muscle tissue was digested with a 35% KOH solution before observation. The final plate layout and editing were conducted with Adobe Illustrator CS3. Mea-
- 180 surements were taken using an ocular measuring graticule mounted on the dissection microscope. All characters were recorded in DELTA (DEscription Language for TAxonomy) format (Dallwitz, 1980) using the DELTA editor (Dallwitz *et al.*, 1999). Taxonomic procedures and descriptions fol-
- 185 low Arnedo & Ribera (1999) and Arnedo et al. (2000).

 Table 1. Abbreviations used in text and figures.

Collections	
BMNH	The Natural History Museum, London, UK
CRBA	Centre de Recursos de Biodiversitat Animal, Universitat de Barcelona, Barcelona, Spain
GBIF	Global Biodiversity Information Facility
MHNP	Muséum National d'Histoire Naturelle, Paris, France
OXUM	Hope Entomological Collections, University Museum, Oxford, UK
ULL	Departamento de Biología Animal, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Eves	Cultury Islands, Spann
AME	anterior medial eyes
PLE	posterior lateral eyes
PME	posterior medial eyes
Cheliceral teeth	
В	basal tooth
D	distal tooth
M	medial tooth
Male copulatory bulb	1122 1 4
AC	additional crest
AL	border
AK	arch-like ridge
חח	distal division
DH	distal haematodoca
ES	external sclerite
F	Flagellum
IS	internal sclerite
L	lateral sheet
LA	lateral sheet anterior apophysis
LF	lateral fold over lateral sheet between internal and external sclerites
Р	posterior apophysis
_ T	Tegulum
Female genitalia	
DA	dorsal arch
DF ME	dorsal arch iold
S	spermatheca
TB	transversal bar
VA	ventral arch
VS	ventral sclerotization

The terminology used to describe the male palp and female vulva structures is based on Deeleman-Reinhold & Deeleman (1988) and Arnedo *et al.* (2000), and was illustrated in Arnedo & Ribera (1999) and Arnedo *et al.* (2000). Leg spination was recorded using the codification method fully 190 described in Arnedo *et al.* (1999). The abbreviations used in text and figures are listed in Table 1.

Phylogenetics

Molecular analyses were based on the data matrix of Macías-Hernández et al. (2008) for the eastern Canarian 195

4

Table 2.	Taxa examined and	GenBank acc	cession numbers	(asterisks indicat	e that only the	16S fragment	could be amplified).
Table 2.	Taxa examined and	GenBank acc	cession numbers	(asterisks indicat	e that only the	16S fragment	could be amplified)

Voucher #	DNA #	Species	Locality	cox1	16S-L1- nad1	285	НЗ	ITS-2
Eastern Can	aries							
NMH429	N47	D.alegranzaensis	Montaña de Lobos, Alegranza	EF458132	EF458087	EU139759	EU139688	EU143814
NMH364	N49	D. alegranzaensis	Montaña Clara	EU139610	EU139637	_	EU139689	EU143815
NMH424	N55	D. alegranzaensis	Valle Fenauco, Yaiza, Lanzarote	EU139611	EU139638	EU139760	EU139690	EU143816
NMH449	N75	D. alegranzaensis	Montaña de las Agujas, La Graciosa	EU139612	EU139639	EU139761	EU139691	EU143817
NMH73	N77	D. alegranzaensis	Mirador del Río, Haría, Lanzarote	EU139609	EU139640	EU139762	EU139692	EU143818
NMH462	N79	D. alegranzaensis	Montaña de Tinache, Tinaio Lanzarote	EU139613	EU139641	EU139763	EU139693	EU143819
NMH59	N37	D. simbeque sp. n	Bco. Elvira Sánchez, Valle de Malpaso,	EU139614	EU139659	EU139783	EU139712	EU143838
NMH60	N39	D. simbeque sp. n	Haría, Lanzarote Bco. Elvira Sánchez, Valle de Malpaso, Haría, Lanzarote	EU139631	EU139660	EU139784	EU139713	EU143839
NMH55	N40	D. simbeque sp. n	Bco. Elvira Sánchez, Valle de Malpaso,	EU139632	EU139661	EU139785	EU139714	_
NMH163	N94	D. lancerotensis	Morro del Cavadero, Jandía, Fuerteventura	EF458120	EF458086	EU139758	EU139687	EU143813
NMH441 NMH168	LB2 N91	D. lancerotensis D. longa	Caldera, Alegranza Morro del Cavadero,	EF458127 EF458134	EF458080 EF458090	EU139757 EU139781	EU139686 EU139710	EU143812 EU143836
NMH169	N92	D. longa	Jandia, Fuerteventura Morro del Cavadero, Jandía, Euerteventura		EU139658	EU139782	EU139711	_
NMH358	N57	D. mahan sp. n	Playa del Trillo, Alegranza	EU139620	EU139647	EU139769	EU139700	EU143826
NMH451	N58	<i>D. mahan</i> sp. n	Caleta de Arriba, La Graciosa	EU139621	EU139648	EU139770	_	EU143827
NMH356	N59	<i>D. mahan</i> sp. n	Playa Catalina Cabrera, Famara, Lanzarote	EU139622	EU139649	EU139771	EU139701	_
NMH447	N65	D. mahan sp. n	Playa del Congrio, Papagayo, Lanzarote	EU139623	EU139650	EU139772	EU139702	EU143828
NMH490	N66	<i>D. mahan</i> sp. n	Playa de Majanicho, Fuerteventura	EU139624	EU139651	EU139773	EU139703	EU143829
NMH572	N76	<i>D. mahan</i> sp. n	Las Salinas, Lobos	EU139625	EU139652	EU139774	EU139704	_
NMH57	N43	D. nesiotes	Bco. Elvira Sánchez, Valle de Malpaso,	EU139615	EU139642	EU139764	EU139695	EU143820
NMH428	N48	D. nesiotes	Montaña de Lobos, Alegranza	EU139616	EU139643	EU139765	EU139694	EU143821
NMH369	N50	D nesiotes	Montaña Clara	EF458133	EF458088	EU139766	EU139696	EU143822
NMH425	N56	D. nesiotes	Valle Fenauco, Yaiza, Lanzarote	EU139617	EU139644	EU139767	EU139697	EU143823
NMH398	N78	D. nesiotes	Mirador del Río, Haría, Lanzarote	EU139618	EU139645	_	EU139698	EU143824
NMH476	N80	D. nesiotes	Montaña de Tinache, Tinajo, Lanzarote	EU139619	EU139646	EU139768	EU139699	EU143825
NMH50	N85	D. sanborodon	Morro Tabaiba, Vallebrón,	EF458135	EF458089	EU139775	EU139705	EU143830
NMH506	N86	D. sanborodon	Montaña de la Cruz, Betancu-	EU139626	EU139653	EU139776	EU139706	EU143831
NMH49	N87	D. spinidorsum	ria,Fuerteventura Morro Tabaiba, Vallebrón, Fuerteventura	EU139627	EU139654	EU139777	EU139707	EU143832

(Continued on next page.)

Table 2. Taxa examined and GenBank accession numbers (asterisks indicate that only the 16S fragment could be amplified)(Continued).
--	---------------

Voucher #	DNA #	Species	Locality	cox1	16S-L1- nad1	285	H3	ITS-2
NMH494	N88	D. spinidorsum	Montaña de la Cruz, Betancuria, Fuerteventura	EU139628	EU139655	EU139778	EU139708	EU143833
NMH78	N89	D. spinidorsum	Cuchillete Montaña Peños, Fuerteventura	EU139629	EU139656	EU139779		EU143834
NMH114	N90	D. spinidorsum	Morro del Peñón, Fuerteventura	EU139630	EU139657	EU139780	EU139709	EU143835
NMH 290	X125	D. aneris sp. n	Selvagem Grande, Salvage Islands	EU139634	EU139683*	_	_	-
NMH608	K510	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396319	HQ396277	HQ396308	HQ396298	HQ396288
NMH609	K511	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396320	HQ396278	HQ396309	HQ396299	HQ396289
NMH610	K512	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396321	HQ396279	HQ396310	HQ396300	HQ396290
NMH611	K513	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396322	HQ396280	HQ396311	HQ396301	HQ396291
NMH612	K514	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396323	HQ396281	HQ396312	HQ396302	-
NMH613	K515	D. aneris sp. n	Selvagem Grande, Salvage Islands	HQ396324	HQ396282	HQ396313	HQ396303	_
Western Car	naries							
UB4013	K103	D. calderensis	Juan Adalid, Garafía, La Palma	AF244309	AF244218/ EU139665	EU139788	EU139718	HQ396292
NMH1438	N358	D. calderensis	Riscos de Alojera, La Gomera	HQ396325	HQ396283	HQ396314	HQ396304	HQ396293
CRBA1393	LB132	D. gomerensis	Cañada de Jorge, La Gomera	HQ396326	HQ396284	HQ396315	HQ396305	HQ396294
CRBA1395	LB133	D. gomerensis	Casa Forestal de Frontera, El Hierro	HQ396327	HQ396285	HQ396316	HQ396306	HQ396295
UB4155	K94	D. silvatica	Barranco de Juel, Hermigua, La Gomera	AF244273	AF244177/ EU139674	EU139808	EU139739	EU143842
NMH 1395	N347	D. silvatica	Pinar Roque Faro, La Palma	HQ396328	HQ396286	HQ396317	HQ396307	HQ396296
NMH 1439	N362	D. silvatica	Mirador de Bascos, El Hierro	HQ396329	HQ396287	HQ396318	_	HQ396297
Continental								
NHM255 NHM075	K226 K228	D. cf. inermis D. cf. inermis	4 km S Tanger, Morocco Mirador del Estrecho, Tarifa, Iberian	EF458142 EF458141	EF458092 EF458091	EU139795 HQ407381	EU139726 HQ407382	_
UB-ery105	K105	D. erythrina	Sant Llorenç del Munt, Barcelona, Iberian Peninsula	AF244252	AF244162*	EU139790	EU139720	EU143840
CRBA590	K294	D. scabricula	Desert de les Palmes, València, Iberian Peninsula	EU068046	EU068078	EU139809	EU139740	-

endemics, with the addition of 12 new individuals: six specimens from Selvagem Grande, five specimens from three western Canarian endemisms (*D. calderensis*, *D. silvatica* and *D. gomerensis*) and one from Morocco (*D. cf. inermis*).
200 Specimens from the western Canaries provided additional calibration points for lineage age estimation (see below). The complete set of species, specimens and genes analysed is listed in Table 2, and the sampling localities in the eastern Canaries and Salvage Islands are indicated in Fig. 1 and Ap-

pendix 1 (see supplementary material which is available on 205 the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...). All analyses were rooted assuming a sister-group relationship of the continental species *Dysdera scabricula* Simon, 1882 to the other species sampled (Arnedo *et al.*, 2007; Macías- 210 Hernández *et al.*, 2008). Samples were stored in absolute ethanol at -20 °C until DNA extractions were performed. All the eastern Canarian *Dysdera* species and additional

specimens from the western Canary Islands and continen-

- 215 tal species were also sampled and included in the analyses. Unless stated otherwise, the programs and settings used for our phylogenetic analyses followed those described in Macías-Hernández *et al.* (2008). Ribosomal genes were aligned with MAFFT v. 5.8
- 220 (http://align.bmr.kyushu-u.ac.jp/mafft/online/server/, manual strategy option set to Q-INS-i). The best substitution model for each gene, as indicated by the Akaike information criterion, was selected with the program jModelTest, version 0.1.1 (Posada, 2008). Maximum likelihood and
- 225 Bayesian inference analyses were conducted with RAxML v. 7.0.4 (Stamatakis, 2006) and MRBAYES v.3.1.2 (Ronquist & Huelsenbeck, 2003), respectively, defining unlinked
- Q1 evolutionary models (GTR+G fro RAxML) for each gene partition in both cases. Two independent runs were con-
- 230 ducted for four million generations. The best likelihood tree was selected out of 10 iterations of random addition of taxa and non-parametric bootstrap support values were drawn from 100 resampled matrices. Uncorrected genetic distances within and between species were calculated with MECA and the form of the second second
- 235 MEGA v. 4.1 software (Tamura *et al.*, 2007).

Divergence time estimation

Divergence times were estimated with the computer program R8S (Sanderson, 2003). A preliminary crossvalidation analysis was conducted to select the clock 240 method that best suited the data (Sanderson, 2002). Clade age was estimated on the Bayesian topology. Each species was only represented by one or two specimens to avoid very short branches that could negatively impact time estimation algorithms (Sanderson, 2003) and to simplify cal-

- 245 culations. Only mitochondrial data were included in the divergence time analysis to produce results that were comparable to former studies (Bidegaray-Batista *et al.*, 2007; Macías-Hernández *et al.*, 2008), and the partially sequenced (only mitochondrial data) specimen X125 of *D. aneris* sp.
- 250 nov. was added to the analyses. Tree editing was performed with the computer program TREEEDIT v. 1.0 a 10. Branch lengths were re-estimated on the preferred topology using the computer program RAxML and defining independent GRT+I+G models for each data partition. The outgroup
- 255 taxon (D. scabricula) was pruned from trees before conducting clock analyses to ensure a dichotomous root node. Clade age confidence intervals were obtained from 100 trees by re-estimating branch lengths after character bootstrapping while keeping the topology constant. The program
- 260 TreeAnnotator (Drummond & Rambaut, 2007) assisted in summarizing the confidence intervals from the sample of trees with bootstrapped branch lengths analysed in R8S. In these analyses, we have improved divergence time estimation by including four calibration points in addition to
- 265 the single point used in former analyses, based on the time of divergence of the Iberian and Moroccan populations of

D. cf. *inermis*, which was fixed to 5.3 Ma by assuming a population split following the opening of the Strait of Gibraltar (Krijgsman *et al.*, 1999). The island populations of *D. gomerensis* and *D. silvatica* from La Gomera and El 270 Hierro, and the island populations of *D. calderensis* and *D. silvatica* from La Palma and La Gomera were set to a maximum time of divergence of 1.2 or 2 Ma respectively, corresponding to the time of origin of the subaerial stages of the youngest islands (Carracedo & Day, 2002). 275

Analysis of morphological variation

The morphological variation data presented in Macías-Hernández et al. (2008) were completed and reanalysed by including 10 specimens of D. aneris sp. nov. (no specimens were available in the former analyses) and additional 280 material of D. longa (two new male specimens). Analyses were based on the following measurements, obtained from five males and five females of each target species (only two D. sanborondon males were available): maximum carapace length (P1), minimum (P2min) and maxi- 285 mum carapace width (P2max), length of the basal segment of the chelicera in lateral view (Q1), maximum width of the basal segment in lateral view (Q2), cheliceral fang length (F), length of the prolateral margin of the basal segment (Esc), femur length of leg 1 (fe1), and metatarsus length of 290 leg 4 (mt4). The assumptions of normality and homogeneity were rejected by the Kolmogorov-Smirnoff test, so we applied a non-parametric Kruskal-Wallis test to detect possible interspecific morphological differences and intraspecific sexual dimorphism. A Pearson test detected high lev- 295 els of autocorrelation between the morphological variables. Therefore, residual values (calculated by means of an interspecific regression using the Pearson correlation for each variable against P1) were used in subsequent analyses to reduce the effects of the reported correlation with body size 300 (Losos et al., 1998). A species similarity matrix was estimated across a hierarchical agglomerative cluster using the Bray-Curtis distance. Finally, principal components analyses (PCA) of all individuals was conducted to assess the variance explained by each independent axis (Legendre & 305 Legendre, 1998). The analyses were performed using the software packages SPSS v. 15, PRIMER v. 5.2.2 (Clarke & Warwick, 1994), and STATISTICA (StatSoft Inc., 1999), and the results were plotted with SIGMAPLOT version 7.0 (SPSS, 2001). 310

Results

Taxonomy

Dysderidae C. L. Koch, 1837 Dysdera Latreille, 1804

TYPE SPECIES: *Aranea erythrina* Walckenaer, 1802: 224 315 (unspecified sex) by original designation, unspecified num-

Figs 2–4. Carapace, dorsal view. 2, *Dysdera aneris* sp. nov. holotype; 3, *Dysdera mahan* sp. nov. holotype; 4, *Dysdera simbeque* sp. nov. holotype.

ber of syntype specimens from France, surroundings of Paris (C. A. Walckenaer), repository unknown, supposed lost.

320 DIAGNOSIS: See Deeleman-Reinhold & Deeleman (1988).

SPECIES INCLUDED: The genus presently includes 248 species (Platnick, 2010).

Dysdera aneris Macías-Hernández & Arnedo, sp. nov. (Figs 2, 5, 8–12, 13–14, Tables 3–4)

325

Dysdera wollastoni Kulczyński, 1899: 342, pl. 6, Figs 22 – 24 (3σ , 2φ , 4 juvs, Selvagens; coll. W. Kulczyński; stored at OXUM, examined) (σ , φ misidentified).—Simon, 1912: 59

Q2 – 60.—Berland & Denis, 1946: 224. – Wunderlich, 1991:

330 312. Fig. 129 (♂, misidentified). Dysdera nesiotes Denis, 1963: 37 – 38.—Rambla, 1978: 132 – 133.—Arnedo et al., 2000: 277–281, Figs 59 – 61 (♂,♀ misidentified).—Arnedo, 2003: 145.

HOLOTYPE: ° [CRBA-4267], 8 Oct 2005 (I. Silva) 335 (CRBA).

PARATYPES: ♀ [CRBA-4268, CRBA-4273], same data as holotype (CRBA); 1 ♂ [GBIF 21705, right bulb removed for SEM], 2♀ [GBIF 21706–21707], same data as holotype (ULL).

Figs 5–7. Left male palps, retrolateral view. 5, *Dysdera aneris* sp. nov. holotype; 6, *Dysdera mahan* sp. nov. holotype; 7, *Dysdera simbeque* sp. nov. holotype.

Figs 8–12. *Dysdera aneris* sp. nov. right male bulb. 8, anterior view; 9, retrolateral view; 10, posterior view; 11, P detail, retrolateral view; 12, distal tip, ventral view.

TYPE LOCALITY: Salvage Islands: Selvagem Grande (N 340 30.146105 W 15.864975).

ADDITIONAL MATERIAL: Salvage Islands: 3°, 1 sub°, 1°, 1 juv. [BM1897.10.18.41–46], label states; '*Dysdera*

Figs 13–18. Female vulva. 13–14, *Dysdera aneris* sp. nov. 13, ventral view; 14, dorsal view; 15–16, *Dysdera mahan* sp. nov. 15, ventral view; 16, dorsal view; 17–18, *Dysdera simbeque* sp. nov. 17, ventral view; 18, dorsal view.

	Proximal	Medial-proximal	Medial-distal	Distal
Tibia 3 dorsal	1.0-1-2.0-1	0	0	0-1.0.0-1
Tibia 3 ventral	0 - 1.0.0 - 1	0	0	0-1.0.0-1
Tibia 4 dorsal	0 - 1.0.0 - 1	0.0.0-1	0	0-1.0.0-1
Tibia 4 ventral	0-1.0.0-1	0 - 1.0.0	0	1.0.0-1
		Number of rows		Number of spines
Femur 3 dorsal		0-1		0-1
Femur 4 dorsal		2		1-4/4-7

Table 3. Intraspecific spination variability of Dysdera aneris sp. nov.

verneaui Simon' (Grant) (BMNH); 10, 19, 3 juvs [B 536]

- 345 (Garreta) (MHNP); 3♂, 2♀, 4 juvs labels state: 'Dysdera wollastoni, Selvagens' 'Ins. Zool. P.A.N. coll. W. Kulczynski' (OXUM); Selvagem Grande 1♂ [NMH608], 3♀ [NMH610, 611, 613], 8 Oct 2005 (I. Silva) (UB); 1♀ [NMH1489], 3♂ [NMH1490–1492], 26 March 2009 (L.
 350 García) (ULL).
- HABITAT AND DISTRIBUTION: This species is found on Selvagem Grande in the Salvage Islands, 165 km north of the Canary Islands (Fig. 1). Denis (1963) also reported the presence of *D. nesiotes* (species to which the Salvage Island
- 355 specimens had been transferred) also in Selvagem Pequena (Pitão) and Ilhéu de Fora. These last records, however, could not be confirmed.

ETYMOLOGY: The species epithet is a noun in apposition; it is the name of a female character in the book *La Pell Freda* 360 ('Cold Skin') by Albert Sánchez Piñol. Aneris belongs to a strange marine race whose members emerge from the sea when night falls, and wander around a desolate island. DIAGNOSIS: Dysdera aneris sp. nov. closely resembles D. nesiotes and D. mahan sp. nov. but differs from them in vulval and DNA sequence characters. It can be distinguished 365 from D. nesiotes by a rectangle-like DA (width/length ratio range 1.7-2.3, in square-like D. nesiotes 1.2-1.6) (Fig. 14). Sclerotization of VA is restricted to the frontal margin (it extends to the halfway point of the lateral margins in D. nesiotes; Fig. 13). It can be distinguished from D. mahan 370 sp. nov. by tooth-like VA projections shorter than VA lateral margins (as long as lateral margins in D. mahan sp. nov.; Figs 13, 15), and smaller body size (average carapace length 4.1 and 5.26 in D. aneris sp. nov. and D. mahan sp. nov., respectively). The three species can also be diag- 375 nosed by fixed nucleotide differences in the DNA barcode of cox1 as follows: position 146 (G/T/A), 257 (A/G/T) and

Figs 19–23. *Dysdera mahan* sp. nov. right male bulb. 19, anterior view; 20, prolateral view; 21, posterior view; 22, retrolateral view; 23, distal tip, ventral view.

Figs 24–28. *Dysdera simbeque* sp. nov. right male bulb (horizontal flipped images of the left bulb). 24, anterior view; 25, retrolateral view; 26, prolateral view; 27, posterior view; 28, P detail, prolateral view.

398 (A/T/G), in *D. aneris* sp. nov., *D. nesiotes* and *D. mahan* sp. nov., respectively (alignment positions correspond

380 to a reference alignment deposited in TreeBASE, available at http://purl.org/phylo/treebase/phylows/study/TB2: S10950).

MALE (*holotype*): Figs 2, 5, 8–12. Carapace (Fig. 2) 4.08 mm long; maximum width 3.16 mm; minimum width 2.09

385 mm. Brownish orange, frontally darker, becoming lighter towards back; smooth. Frontal border roughly triangular, from 1/2 to 3/5 carapace length; anterior lateral borders convergent. AME diameter 0.22 mm; PLE 0.21 mm; PME 0.18 mm; AME separated from each other by approximately

390 2/3 diameter, PME approximately 1/3 PME diameter from PLE. Sternum orange, uniformly distributed; smooth. Chelicerae 1.68 mm long, approximately 1/3 of cara-

pace length in dorsal view; fang medium-sized, 1.53 mm; basal segment dorsal, ventral side completely covered with

- 395 granulations. Chelicera inner groove short, approximately 1/3 cheliceral length; armed with three teeth and lamina at base; B>D>M; D round, located roughly at centre of groove; B close to basal lamina; M at middle of B and D. Legs orange. Lengths of male described above: fe1 3.31
- 400 mm (all measurements in mm), pa1 2.29, ti1 3.01, me1
 3.01, ta1 0.66, total 12.29; fe2 2.91, pa2 1.99, ti2 2.55, me2 2.60, ta2 0.71, total 10.76; fe3 2.29, pa3 1.38, ti3 1.53, me3 2.29, ta3 0.61, total 8.11; fe4 3.16, pa4 1.73, ti4 2.6, me4 2.96, ta4 0.71, total 11.17; fe Pdp 2.04, pa Pdp 1.12, ti
- 405 Pdp 0.97, ta Pdp 0.92, total 5.05; relative length: 1>4>2>3.
 Spination: leg1, 1eg2 spineless; tb3d spines arranged in two bands; proximal 1.0.1; distal 1.0.0; tb3v spines arranged in two bands; proximal 1.0.0; distal 1.0.0; with two terminal spines. Fe4d spines in two rows; forward 1–0; backward
- 410 5–3; tb4d spines arranged in two bands; proximal 0.0.1; distal 0.0.1; tb4v spines arranged in three bands; proximal 1.0.0–1; medial-proximal 0.0.1; distal 1.0.0; with two terminal spines. Claws with 8 teeth or less; only slightly larger than claw width.
- 415 Abdomen 4.9 mm long; whitish; cylindrical. Abdominal dorsal hairs 0.11 mm long; medium-sized, roughly straight, compressed, lanceolate; uniformly, thickly distributed.

Male copulatory bulb (3A) T as long as DD. DD bent approximately 45° in lateral view; internal distal border

- 420 markedly expanded. ES wider, more sclerotized than IS; IS continuous to tip. DD tip (Figs 8–10, 12) frontal (upper) sheet internal portion markedly projected above posterior (lower) sheet. C present, long; distal end close to DD internal tip; distal border rounded, smooth, markedly expanded,
- 425 perpendicular to DD. L well developed; external border sclerotized, laterally markedly folded, distally projected; distal border divergent, continuous. LA present, hook-like; shorter than L. F present, tip divided and distally curved to external side; proximally fused to DD. AL present, well-
- 430 developed; not joined to F; proximal border in posterior view smooth, not fused with DH. P (Fig. 11) fused to T; perpendicular to T in lateral view; lateral length from 1/2 to

2/3 of T width; ridge present, perpendicular to T; distinctly expanded, rounded, upper margin slightly toothed along its extent, mainly on external side; few teeth (4–6); not distally 435 projected; back margin not folded.

FEMALE (*paratype* CRBA-4268): Figs 13, 14. All characters as in male except: carapace 3.88 mm long; maximum width 3.01 mm; minimum width 1.94 mm. Anterior laterally rounded at maximum dorsal width, back lateral borders 440 straight. AME diameter 0.21 mm; PLE 0.195 mm; PME 0.17 mm.

Chelicerae 1.68 mm long; fang medium sized, 1.53 mm. Lengths of female described above: fe1 3.01 mm (all measurements in mm), pa1 2.0, ti1 2.55, me1 2.55, ta1 0.56, 445 total 10.66; fe2 2.55, pa2 1.73, ti2 2.29, me2 2.24, ta2 0.56, total 9.38; fe3 2.0, pa3 1.22, ti3 1.48, me3 2.09, ta3 0.61, total 7.45, fe4 2.8, pa4 1.68, ti4 2.35, me4 2.75, ta4 0.71, total 10.3; fe Pdp 1.78, pa Pdp 0.87, ti Pdp 0.82, ta Pdp 0.97, total 4.44; relative length 4 > 1 > 2 > 3. Spination: leg1, leg2 450 spineless. Tb3d spines arranged in two bands; proximal 1.0.1; distal 0–1.0.0–1; tb3v spines arranged in two bands; proximal 1.0.0; distal 1.0.0; with two terminal spines. Fe4d spines in two rows; forward 1; backward 3; tb4d spines arranged in two bands; proximal 0.0.1; distal 0.0.1; tb4v with 455 two terminal spines.

Abdomen 4.65 mm long; whitish; cylindrical. Abdominal dorsal hairs 0.1424 mm long; thin, roughly straight, compressed, lanceolate; uniformly thickly distributed.

Vulva (Figs 13, 14) DA not distinguishable from VA; rect- 460 angular; DA twice as wide as long; DF wide in dorsal view. MF margins fused, sheet-like, well-developed, completely sclerotized, projected backwards, shorter than DA lateral length. VA frontal region completely sclerotized; posterior region sclerotized in most anterior area; tooth-shaped ex- 465 pansion from internal back border; not joined to lateral sclerotization, slightly shorter than DF lateral margins. S attachment not projected under VA; arms as long as DA, m-shaped; ends projected forwards; neck hardly visible. VARIATION: The male carapace ranges in length from 470 4-4.8 mm and female from 3.5-4.4 mm (N = 5). The colour of the carapace varies between red orange to brownish orange in some individuals. The vulva shows a different degree of VA sclerotization, and in some females S arms are smaller and rounded. Spination and leg measurement 475 variability are listed in Tables 3 and 4, respectively. REMARKS: In 1864 the British naturalist John Blackwall described a new Dysdera species from the Salvage Islands, Dysdera wollastoni. Almost 20 years later, in a taxonomic treatment of spiders from Atlantic Ocean islands the great 480 French arachnologist Eugène Simon expressed his doubts about the validity of the former species, which he considered most likely to be a senior synonym of the cosmopolitan species D. crocata C. L. Koch, 1838 (Simon, 1883). In 1899 the Polish arachnologist W. Kulczyński published 485 a redescription with excellent illustrations of D. wollastoni, based on newly collected material from the Salvage

	Ι	II	III	IV
Fe Pa Ti Mt Ta	$\begin{array}{c} 3.3 - 3.8/2.6 - 3.5 \\ 2.3 - 2.5/1.8 - 1.9 \\ 3.0 - 3.4/2.3 - 3.1 \\ 3.0 - 3.5/2.1 - 3.0 \\ 0.6 - 0.7/0.5 - 0.6 \end{array}$	2.9-3.4/2.3-3.1 $1.9-2.2/1.6-2.2$ $2.5-3.0/1.9-2.8$ $2.6-3.0/1.9-2.6$ $0.71/0.5-0.6$	2.2-2.6/1.9-2.6 $1.3-1.5/1.1-1.5$ $1.5-1.8/1.4-1.8$ $2.3-2.5/1.6-2.5$ $0.6-0.6/0.5-0.6$	$\begin{array}{c} 3.2 - 3.6/2.8 - 3.5 \\ 1.7 - 1.9/1.4 - 1.9 \\ 2.6 - 2.7/2.0 - 2.7 \\ 2.9 - 3.4/2.5 - 3.3 \\ 0.7 - 0.7/0.6 - 0.7 \end{array}$
Total	12.3–13.9/9.5–12.7	10.7–12.3/8.5–11.2	8.1–9.1/6.7–9.0	11.1–12.5/9.4–12.3

Table 4. Dysdera aneris sp. nov. Leg measurements variability. Males (N = 5)/Females (N = 5).

Islands. Simon examined a new batch of specimens from these islands collected by M.L. Garreta, which, according to him, closely resembled the species *D. nesiotes*, which

- he had recently described from the Canary Islands, except for their smaller size and fewer spines on fe IV. Therefore, he proposed downgrading the status of the Canarian specimens to subspecies and referring to it as *D. wollastoni ne-*
- 495 siotes, probably after observing Kulczyński's redescription (Simon, 1912). It took more than half a century to confirm Simon's original suggestion that *D. wollastoni* was a junior synonym of *D. crocata*. Jacques Denis (1963) considered Kulczyński's redescription of *D. wollastoni* to be based on
- 500 a misidentification and, supported by information provided by J.A.L. Cooke, who was based at Oxford where Blackwall types were stored, hence reinstated *D. nesiotes* to full species status and transferred all specimens from the Salvages identified as *D. wollastoni* sensu Kulczyński to this
- species. Wunderlich (1991) argued against the former synonym, suggesting that a spider specialist such as Blackwall could not have possibly misidentified *D. crocata*. Arnedo *et al.* (2000) examined material from both the Salvage Islands and Lanzarote and concluded that there were not any clear
- 510 diagnostic differences separating these island populations. We have now had the chance to examine the original material used by Blackwall to describe *D. wollastoni*, and we can confirm that this is a junior synonym of *D. crocata*, and we have examined the material used by Kulczyński for his

515 redescription, which belongs to D. aneris sp. nov.

Dysdera mahan Macías-Hernández & Arnedo, sp. nov. (Figs 3, 6, 15–16, 19–23, Tables 5–6)

Dysdera nesiotes Arnedo *et al.*, 2000: 278–280, Fig. 63 (q misidentified).

HOLOTYPE: ♂ [CRBA-4269] (right bulb removed for 520 SEM), 8 Dec 2004 (GIET) (UB).

PARATYPES: Canary Islands: Q [CRBA-4270], same data as holotype (CRBA); 19 [GBIF 21708], Fuerteventura, La Oliva, Playa de Esquinzo, 31 March 2004 (H. López) (ULL); 1º [GBIF 21709], Lanzarote, Yaiza, Playa Caleta 525 del Congrio, Papagavo, 7 Feb 2005, (N. Macías-Hernández) (ULL); 1º [GBIF 21710], Lanzarote, Tinajo, Playa de la Madera, Timanfaya, 28 March 2004 (H. López) (ULL); 1º [GBIF 21711], 2 ♂ [GBIF 21711–21712], Lanzarote, Haría, Playa Catalina Cabrera, Famara, 28 Nov 2004 530 (GIET) (ULL); 1d [GBIF 21714], Alegranza, Playa de El Trillo; 8 Dec 2004 (GIET) (ULL). TYPE LOCALITY: Canary Islands: Alegranza, Playa de El Trillo (N 29.404183 W 13.490834). ADDITIONAL MATERIAL: Canary Islands: La Graciosa 535 4 juv. [NMH 451], Caleta de Arriba, 31 Jan 2005 (N. Macías-Hernández) (ULL); Lobos: 4 juv. [NMH 572], Playa Las Salinas, Mar 2004 (N. Macías-Hernández & H. López) (ULL); Lanzarote: 1º [NMH65], Haría, Punta Pasitos, Mala, 26 March 2004 (A.J. Pérez) (ULL); 19 540 [2887UB], Órzola, Charcos de marea, 25 Feb 1995 (M. Arnedo, C. Ribera & P. Oromí) (CRBA); 1 juv. [NMH 113], Tinajo, Playa Caleta del Mariscadero, Timanfaya, 28 March 2004 (H. López) (ULL); 1 juv. [NMH443], Playa de Teneza, 8 Feb 2005 (N. Macías-Hernández) 545 (ULL); 1 juv. [NMH448], Yaiza, Playa Las Salinas, Puerto Calero, 9 Feb 2005 (N. Macías-Hernández); Fuerteventura: 3 juvs [NMH490-492], Corralejo, Playa Majanicho, 5 Feb 2005 (M. Arnedo & N. Txasco) (CRBA). 550 HABITAT AND DISTRIBUTION: This species is found

in the intertidal zones of pebble beaches on the sea-shores

Table 5.	Intraspecific	spination	variability	of Dysdera	mahan sp.	nov.
	1	1		~		

	Proximal	Medial-proximal	Medial-distal	Distal
Tibia 3 dorsal	1.0.0 - 1	Ō	0	0-1.0.1-0
Tibia 3 ventral	0-1.0.0	0	0	0 - 1.0.0
Tibia 4 dorsal	1 - 2.0.0	0	0	0-1.0.0-1
Tibia 4 ventral	0 - 1.0.0	0	0	0
		Number of rows		Number of spines
Femur 3 dorsal		0		0
Femur 4 dorsal		2		1-3/4-6

490

of Lanzarote, the northern islets, Lobos and the north of Fuerteventura (Fig. 1).

- 555 ETYMOLOGY: The species epithet is a noun in apposition; the name refers to a giant aborigine that inhabited Fuerteventura, and it is also used to refer to the single island that formed Lanzarote and Fuerteventura during past episodes of marine regression.
- 560 DIAGNOSIS: The species closely resembles *D. aneris* sp. nov. and *D. nesiotes*. It can be distinguished from the former species by its larger size, longer legs IV, anterior toothlike projections of vulva VA as long as DA (Figs 13, 15), rectangle-like DA (Figs 14, 16), and inter-tidal, pebble-
- 565 beach habitat. The three species differ in DNA sequences (see *D. aneris* sp. nov. diagnosis). It differs from close relative *D. spinidorsum* by copulatory bulb with shorter LA (Fig. 19), attenuated C (Fig. 22), AL folded at its prolateral margin (Fig. 21), vulva with shorter MF backward
- 570 projections (only slightly longer than DA; Fig. 15), and tooth-like sclerotization of frontal VA (Fig. 15). The two species can also be diagnosed by fixed nucleotide differences in the DNA barcode of cox1 as follows: position 5 (A/T), 92 (T/A), 155 (C/T), 188 (T/A), 254 (G/A), 314
- 575 (A/G), 320 (G/A), 338 (G/A), 416 (A/T), 488 (C/T) and 527 (C/T) in *D. aneris* sp. nov. and *D. spinidorsum*, respectively (reference alignment deposited in TreeBASE, available at http://purl.org/phylo/treebase/phylows/study/TB2: S10950).
- 580 MALE (*holotype*): Figs 3, 5, 19–23. Carapace (Fig. 3) 5.3 mm long; maximum width 4.28 mm; minimum width 2.6 mm. Brownish red, frontally darker, becoming lighter towards back; smooth. Frontal border roughly round, from 1/2 to 3/5 carapace length; anterior lateral borders con-
- vergent. AME diameter 0.247 mm; PLE 0.234 mm; PME 0.221 mm; AME separated from one another by approximately 2/3 diameter; PME less than 1/4 PME diameter from PLE. Sternum brownish orange, frontally darker, becoming lighter towards back or darkened on borders; very slightly wrinkled, mainly between legs and frontal border.
 - Chelicerae 2.7 mm long, approximately 1/3 of carapace length in dorsal view; fang medium-sized, 1.785 mm; basal segment dorsal, ventral side completely covered with piligerous granulations. Chelicera inner groove medium-
- 595 size, approximately 2/5 cheliceral length; armed with three teeth and lamina at base; D = B > M; D trapezoid, located roughly at centre of groove; B close to basal lamina; M close to B. Legs dark orange-coloured. Lengths of male described above: fel 5.56 mm (all measurements in mm),
- pa1 3.57, ti1 5.35, me1 5.41, ta1 1.02, total 20.91; fe2 4.7, pa2 3.06, ti2 4.59, me2 4.69, ta2 1.02, total 18.05; fe3 3.82, pa3 2.14, ti3 3.1, me3 3.67, ta3 1.02, total 13.72; fe4 4.84, pa4 2.65, ti4 4.28, me4 5.05, ta4 1.07, total 17.9; fe Pdp 2.86, pa Pdp 1.58, ti Pdp 1.53, ta Pdp 1.33, total 7.29; rel-
- 605 ative length: 1>2>4>3. Spination: leg1, leg2 spineless; tb3d spines arranged in two bands; proximal 1.0.0–1; distal 1.0.0; tb3v spines arranged in one band; proximal 1.0.0;

with two terminal spines. Fe4d spines in two rows; forward 3–2; backward 5–6; tb4d spines arranged in two bands; proximal 0–1.0.1; distal 0.0.1; tb4v spines arranged in one 610 band; proximal 1.0.0; with two terminal spines. Claws have 8 teeth or less; hardly larger than claw width.

Abdomen 6.22 mm long; cream-coloured; cylindrical. Abdominal dorsal hairs 0.12 mm long; thick, roughly straight, compressed, lanceolate; uniformly thickly dis- 615 tributed.

Male copulatory bulb (Figs 6, 19–23) as in *D. aneris* sp. nov.

FEMALE (*paratype* CRBA-4270): Figs 15–16. All characters as in male except: carapace 4.84 mm long; maximum 620 width 3.77 mm; minimum width 2.5 mm. Back lateral borders rounded. AME diameter 0.25 mm; PLE 0.23 mm; PME 0.19 mm.

Chelicerae 2.19 mm long, approximately 1/3 of carapace length in dorsal view; fang medium-sized, 0.34 mm. 625 Legs orange. Lengths of female described above: fe1 4.44 mm (all measurements in mm), pa1 3.01, ti1 4.03, me1 4.03, ta1 0.87, total 16.37; fe2 3.88, pa2 2.65, ti2 3.47, me2 3.52, ta2 0.82, total 14.33; fe3 3.21, pa3 1.99, ti3 2.45, me3 3.01, ta3 0.82, total 11.47; fe4 4.23, pa4 2.5, ti4 630 3.67, me4 4.23, ta4 1.02, total 15.66; fe Pdp 2.55, pa Pdp 1.27, ti Pdp 1.02, ta Pdp 1.27, total 6.12; relative length 1>4>2>3. Spination: leg1, leg2 spineless; tb3d spines arranged in two bands; proximal 1.0.0-1; distal 1.0.0; tb3v spines arranged in one band; proximal 1.0.0; with two ter- 635 minal spines. Fe4d spines in two rows; forward 1; backward 5-6; tb4d spines arranged in two bands; proximal 0.0-1.2; distal 0.0.1; tb4v spines arranged in two bands; proximal 0-1.2-0.0; medial-proximal 1.0.0; with two terminal spines. 640

Abdomen 9.96 mm long; cream-coloured; cylindrical. Abdominal dorsal hairs 0.12 mm long; thick, roughly straight, compressed, lanceolate; uniformly, thickly distributed.

Vulva (Figs 15–16) as in *D. aneris* sp. nov. except VA 645 posterior region sclerotized in lateral margins; tooth-shaped expansion from internal back border as long as DF lateral margins.

VARIATION: Male cephalothorax ranges in length from 4.9-5.3 mm (N = 4), female from 4.8-6 mm (N = 5). 650 Carapace and leg colours vary from red orange to brownish orange in some specimens. The internal part of the pedipalps presents denser short black hairs in females. Spination and leg measurement variability is listed in Tables 5 and 6, respectively. 655

REMARKS: A female specimen of the new species had already been studied by Arnedo *et al.* (2000), who rendered its particular vulva DA shape as a case of intraspecific variability in *D. nesiotes*.

Dysdera simbeque Macías-Hernández & Arnedo, sp. nov. 660 (Figs 4, 7, 17–18, 24–28, Tables 7–8)

	Ι	II	III	IV
Fe	4.8-5.5/4.4-5.2	4.1-4.7/3.8-4.8	3.3-3.8/3.2-3.8	4.5-4.8/4.2-5.1
Pa	2.9-3.6/2.9-3.3	2.6-3.0/2.6-3.2	1.9-2.1/1.9-2.3	2.4-2.7/2.4-2.8
Ti	4.6-5.3/4.0-4.6	4.0-4.6/3.5-4.4	2.3-3.0/2.3-2.9	3.7-4.3/3.6-4.5
Mt	4.8-5.4/4.0-5.1	3.9-4.7/3.5-4.6	3.2-3.7/3.0-3.9	4.3-5.0/4.2-5.39
Та	0.9-1.0/0.8-0.9	0.8-1.0/0.7-0.9	0.8-1.0/0.8-0.9	1.0-1.0/1.0
Total	18.0-20.9/16.4-19.7	15.7-18.0/14.3-18.0	11.7-13.7/11.3-13.8	16.0-17.9/15.6-18.7

Table 6. Dysdera mahan sp. nov. Leg measurements variability. Males (N = 4)/Females (N = 5).

HOLOTYPE: *c*^o [CRBA-4271] (right bulb removed for SEM), 29 March 2004 (GIET) (CRBA).

PARATYPE 1♀ [CRBA-4272], same data as holotype (CRBA); 2♂ [GBIF 21715–21716], 3♀ [GBIF 21717–21718-21719], same data as holotype, 29 March 2004 (GIET) (ULL).
TYPE LOCALITY: Canary Islands: Lanzarote, Cabecera

del Barranco Elvira Sánchez, Haría (N 29.130723 W 13.516902).

ADDITIONAL MATERIAL: CANARY ISLANDS: Lanzarote: Haría, Fuente Ovejas, Guinate, 1 juv. [NMH 576], 26 Nov 2004 (N. Macías-Hernández) (ULL); 3 juvs [NMH1294–1296], MSS pitfall traps, 13 Jan 2007 (H. López & H. Morales) (ULL).

HABITAT AND DISTRIBUTION: This species is only known from two nearby sites on northern Lanzarote (Fig. 1).

ETYMOLOGY: The species epithet is an adjective in apposition; it means 'big' or 'voluminous' in the language of the aboriginal inhabitants of the Canary Islands.

DIAGNOSIS: *Dysdera simbeque* sp. nov. differs from closely related *D. alegranzaensis* in its larger size (average carapace lengths 6.12 and 4.48, respectively), cop-

- 685 ulatory bulb with LA longer than L (Fig. 24), vulva VA not sclerotized; S attachment not projected backwards (Fig. 17). It can be easily distinguished from sympatric *D. nesiotes* by its larger size, a copulatory bulb with F absent (Fig. 24), vulva VA without frontal or lat-
- 690 eral sclerotization and distal tips of S arms projected forward (Fig. 17). The three species can be diagnosed by fixed nucleotide differences in the DNA barcode for cox1 as follows: position 242 (A/G/T), 263 (G/A/T),

338 (G/A/T), 347 (T/A/G), 368 (T/G/A), 434 (G/A/T), 506 (A/T/G), 533 (G/A/T) and 596 (G/A/T) in *D. sim-* 695 *beque* sp. nov., *D. alegranzaensis* and *D. nesiotes*, respectively (reference alignment deposited in TreeBASE, available at http://purl.org/phylo/treebase/phylows/study/TB2: S10950).

MALE (*holotype*): Figs 4, 7, 24–28. Carapace (Fig. 4) 6.12 700 mm long; maximum width 4.84 mm; minimum width 3.47 mm. Red orange, frontally darker, becoming lighter towards back; slightly foveate at borders, slightly wrinkled with small black grains mainly at the front. Frontal border roughly round, from 1/2 to 3/5 carapace length; anterior lateral borders convergent. AME diameter 0.26 mm; PLE 0.26 mm; PME 0.221 mm; AME separated from each other by approximately one diameter or more; PME approximately 1/2 PME diameter from PLE. Sternum reddish orange, frontally darker, becoming lighter towards back; very 710 slightly wrinkled, mainly between legs and frontal border.

Chelicerae 3.57 mm long, approximately 2/5 of carapace length in dorsal view; fang medium-sized, 2.29 mm; basal segment dorsal, ventral sides completely covered with granulations. Chelicera inner groove medium-size, about 715 2/5 cheliceral length; armed with three teeth and lamina at base; B>D>M; D trapezoid, located roughly at centre of groove; B close to basal lamina; M at middle of B and D. Legs dark orange-coloured. Lengths of male described above; fe1 5.508 mm (all measurements in mm), pa1 3.93, 720 ti1 5.61, me1 4.95, ta1 0.87, total 20.86; fe2 5, pa2 3.37, ti2 4.69, me2 4.39, ta2 0.82, total 18.26; fe3 3.82, pa3 2.29, ti3 2.86, me3 3.62, ta3 0.82, total 13.41; fe4 4.84, pa4 2.75, ti4 3.82, me4 4.6, ta4 1.02, total 17.03; fe Pdp 3.6, pa Pdp 1.73, ti Pdp 1.73, ta Pdp 1.58, total 8.62; relative length: 725

Table 7. Intraspecific spination variability of Dysdera simbeque sp. nov.

	Proximal	Medial-proximal	Medial-distal	Distal
Tibia 3 dorsal	1.1–2.1	0	0	0-1.0.0-1
Tibia 3 ventral	1.0 - 1.0 - 1	0	0	0.0.1
Tibia 4 dorsal	1.0-2.1	0	0	1.0.1
Tibia 4 ventral	1.0.1	0	0	0.2.0
		Number of rows		Number of spines
Femur 3 dorsal		0		0
Femur 4 dorsal		2		1-2/4-9

670

	Ι	II	III	IV
Fe	5.1-5.5/4.5-5.0	4.5-5.0/4.1-4.3	3.3-4.1/3.2-3.4	4.4-4.8/4.2-4.5
Pa	3.5-3.9/3.2-3.5	3.1-3.5/2.8-3.0	2.1-2.3/1.9-2.0	2.6-2.7/2.4-2.7
Ti	5.0-5.6/4.0-4.3	4.1-4.7/3.5-4.0	2.5-2.8/2.3-2.5	3.6-3.8/3.5-3.7
Mt	4.3-4.9/3.6-4.0	4.0-4.4/3.2-3.6	3.2-3.6/2.9-3.1	4.3-4.6/3.9-4.2
Та	0.8-1.0/0.87	0.8-0.9/0.8-0.7	0.8-0.8/0.7-0.8	0.87-1.02/0.87
TOTAL	19.1-20.8/16-17.6	16.8-18.2/14.4-15	11.9-13.4/11.3-11.8	16.1-17.0/15-16

Table 8. Dysdera simbeque sp. nov. Leg measurements variability. Males (N = 4)/Females (N = 4).

1>2>4>3. Spination: leg1, leg2 spineless; tb3d spines arranged in two bands; proximal 1.2–1.1; distal 1.0.1; tb3v spines arranged in one band; proximal 1.0.1; with two terminal spines. Fe4d spines in two rows; forward 1–2; backward

- 730 9–10; tb4d spines arranged in two bands; proximal 1.2.1; distal 1.0.1; tb4v spines arranged in two bands; proximal 1.0.1; distal 1.0.1; with two terminal spines. Distal part of metatarsus III and IV densely covered with short hair. Claws with 8 teeth or less; only slightly longer than claw width.
- 735 Abdomen 8.38 mm long; cream-coloured; cylindrical. Abdominal dorsal hairs 0.12 mm long; thick, roughly straight, compressed, lanceolate; uniformly, thickly distributed.
- Male copulatory bulb T as long as DD (Fig. 7); DD not bent, same T axis in lateral view; internal distal border markedly expanded. ES wider, more sclerotized than IS; IS continuous to tip. DD tip (Figs 24–27) straight in lateral view. C present, short; distal end on DD internal tip; poorly developed; located close to DD distal tip; proximal
- 745 border sharply decreasing; distal border truncated, upper tip not projected, rounded, external side smooth. L welldeveloped; external border sclerotized, laterally markedly folded, distally projected; distal border divergent, continuous. LA present, sheet-like; longer than, distally not fused
- to L. F absent. AL present, well-developed; proximal border in posterior view smooth, not fused with DH. P (Fig. 28) fused to T; perpendicular to T in lateral view; lateral length from 1/2 to 2/3 of T width; ridge present, perpendicular to T; distinctly expanded, right-angled, upper margin smooth;
 not distally projected; back margin not folded.

FEMALE (*paratype* CRBA-4272): Figs 17–18. All characters as in male except: Carapace 6.27 mm long; maximum width 4.9 mm; minimum width 3.26 mm. AME diameter 0.29 mm; PLE 0.25 mm; PME 0.19 mm.

- Chelicerae 3.21 mm long; fang medium-sized, 2.29 mm;
 M close to B. Lengths of female described above: fe1 5 mm (all measurements in mm), pa1 3.47, ti1 4.28, me1 4.03, ta1 0.87, total 17.65; fe2 4.33, pa2 3.06, ti2 3.77, me2 3.52, ta2 0.82, total 15.5; fe3 3.37, pa3 2.04, ti3 2.55, me3
- 3.06, ta3 0.82, total 11.83; fe4 4.44, pa4 2.7, ti4 3.72, me4
 4.23, ta4 0.87, total 15.96; fe Pdp 3.26, pa Pdp 1.53, ti Pdp
 1.27, ta Pdp 1.58, total 7.65; relative length 1>4>2>3.
 Spination: leg1, leg2 spineless; tb3d spines arranged in two bands; proximal 1.2.1; distal 1.0.0; tb3v spines arranged in

one band; proximal 1.0.1; with two terminal spines. Fe4d 770 spines in two rows; forward 2; backward 9; tb4d spines arranged in two bands; proximal 1.0.1; distal 1.0.1; tb4v spines arranged in two bands; proximal 1.0.1; distal 1.0.1; with two terminal spines.

Abdomen 8.13 mm long; cream-coloured; cylindrical. 775 Abdominal dorsal hairs 0.12 mm long; thick, roughly straight, compressed, lanceolate; uniformly, thickly distributed.

Vulva (Figs 17–18) DA not distinguishable from VA, rectangular; DA twice as wide as long; DF wide in dorsal view. MF well-developed, completely sclerotized. VA frontal region completely sclerotized; posterior region sclerotized in most anterior area. S attachment not projected under VA; arms as long as DA, straight; tips dorsally projected; neck as wide as arms. VA PLATION: Mala combaletheray ranges in length from

VARIATION: Male cephalothorax ranges in length from 5.9–6.8 mm, females from 5.8–6.2 mm (N = 4). The colour of the carapace varies between red orange to brownish orange in some specimens. Some have a greater number of short black hairs on the sternum and ventral part of the 790 chelicerae. The size of the S arms and the development of the lateral sclerotization of the VA differ among specimens. Spination and leg measurement variability are listed in Tables 7 and 8, respectively.

REMARKS: Specimens were collected by hand from under 795 stones, as well as in MSS (mesovoid shallow substratum) traps.

Phylogenetic analyses

The combined data matrix included 48 taxa representing 15 species and a total of 3749 characters (cox1: 1179 bp; 800 16S+L1: 566 pb and 40 gap absence/presence characters; *nad1*: 343 pb; 28S: 765 pb and 17 gap a/p chars; *H3*: 328 pb, *ITS-2*: 465 pb and 46 gap a/p chars).

Parsimony analyses of the combined data matrix yielded two trees of 4071 steps (CI: 47, RI: 74). All clades received 805 jackknife supports above 70%, except for the position of *D. sanborondon* as sister species to *D. alegranzaensis* + *D. simbeque* sp. nov. (Fig. 29). The AIC criterion implemented in jMODELTEST selected the following models of nucleotide substitution for each gene fragment: TIM3+I+G 810 for *cox1*; TIM2+I+G for *16S*+*L1*; TrN+I+G for *nad1*; Q3

Fig 29. Strict consensus of two trees of 4071 steps (CI = 47, RI = 74) resulting from uniformly weighted parsimony analysis of the complete data set. Bars on branches denote support as follows: anterior bar refers to parsimony jackknife support, middle bar to maximum likelihood bootstrap support and posterior bar to posterior probability. Black bar: parsimony jackknife or ML bootstrap >70%, posterior probability >0.95%; white bar: parsimony jackknife or ML bootstrap <70%, posterior probability <0.95%; asterisk (*): this particular clade was not recovered in the analyses.

TIM2+G for 28S; TrNef+I+G for H3 and HKY+G for ITS-2. The Bayesian inference analyses were run during 4 million generations and the first 10% were discarded as
burn-in. Maximum likelihood analyses yielded one tree of logL -2713.866745. All analyses agreed in supporting the monophyly of the eastern Canarian endemics, with

the exclusion of *D. lancerotensis*, and in recovering the same internal topology. The only source of conflict across the different analyses was the position of *D. sanborondon*, which was a sister to *D. simbeque* sp. nov. + *D. alegranza*-

taxa in the model-based analyses, although both alternative positions were poorly supported (Fig. 29). PBS values (Table 9, see supplementary material which is available on 825 the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...) indicated low levels of character conflict across partitions (the largest negative value for the mitochondrial data set was -4 found in clade 4, and the largest nuclear -2, in 830 clade 8).

ensis in the parsimony analyses and sister to the remaining

Fig 30. Bayesian majority rule consensus tree of the combined mitochondrial genes. Bars on branches denote support as follows: anterior bar refers to parsimony jackknife support, middle bar to maximum likelihood bootstrap support and posterior bar to posterior probability. Black bar: parsimony jackknife or ML bootstrap >70%, posterior probability >0.95%; white bar: parsimony jackknife or ML bootstrap <70%, posterior probability <0.95%; asterisk (*): this particular clade was not recovered in the analyses.

The ILD test revealed the existence of significant incongruence between the mitochondrial and nuclear datasets (P = 0.001). Visual inspection of the trees obtained from

835 the independent analyses of the mitochondrial and nuclear genes revealed that the main source of conflict is the position of the species D. longa, which forms a monophyletic group with D. nesiotes, D. aneris sp. nov., D. spinidorsum and D. mahan sp. nov. based on the mitochondrial data 840 (Fig. 30), and it is sister to D. simbeque sp. nov. + D.

alegranzaensis according to the nuclear genes (Fig. 31). Another relevant topological difference between the two partial analyses is the position of D. aneris sp. nov., which is sister to D. spinidorsum + D. mahan sp. nov. according to mitochondrial data, but is a sister to D. nesiotes based 845 on the nuclear genes. In addition, the nuclear genes did not support monophyly of the genotypes of *D. mahan* sp. nov., D. spinidorsum, D. aneris sp. nov. and D. nesiotes, and some of these species did, in fact, share nuclear genotypes.

Fig 31. Bayesian majority rule consensus tree of the combined nuclear genes. Bars on branches denote support as follows: anterior bar refers to parsimony jackknife support, middle bar to maximum likelihood bootstrap support and posterior bar to posterior probability. Black bar: parsimony jackknife or ML bootstrap > 70%, posterior probability > 0.95%; white bar: parsimony jackknife or ML bootstrap < 70%, posterior probability < 0.95%; asterisk (*): this particular clade was not recovered in the analyses. Q4

- 850 Support for the conflicting topologies involving the last species, however, was very low in all analyses, and the ILD test applied only to these species failed to detect significant incongruence between the two partitions (P = 0.1918).
- Comparisons of uncorrected genetic distances (*P*values) between eastern Canarian species indicated that *D. spinidorsum* and *D. mahan* sp. nov. exhibited the lowest levels of genetic divergence for all gene fragments. Uncorrected pairwise distances within and between species revealed higher divergence levels for the

mtDNA than for the nuclear *ITS-2* gene (Table 10, see 860 supplementary material which is available on the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...).

Divergence times

Preliminary cross-validation analyses selected the Langley-865 Fitch as the best clock method for analysing the mitochondrial data set. The clade age estimates and corresponding

Fig 32. Chronogram obtained by the Langley–Fitch clock method based on the preferred Bayesian topology obtained by the simultaneous analyses of the *cox1*, *16S*, *nad1*, *28S* and *H3* partitions. Numbers on nodes are estimated lineage age and bars are confidence intervals based on bootstrap resampling of branch lengths. Open circles and filled circles correspond to maximum and fixed calibration points, respectively (see text for details).

confidence intervals are summarized in Fig. 32. The average rate of substitution estimated was 0.04916 per site per million years, corresponding to a pairwise genetic diver-

- 870 million years, corresponding to a pairwise genetic divergence of 9.8%, which is five times faster than the rates estimated by Macías-Hernández *et al.* (2008) using a single calibration point (1.75% pairwise divergence), and four times faster than universal rates reported for arthropod mitochon875 drial genes (DeSalle *et al.*, 1987; Brower, 1994), though it is similar to the rates estimated for *Dysdera lancerotensis* (10.2%) (Bidegaray-Batista *et al.*, 2007). In spite of the
- higher substitution rates, the estimated divergence time in the present study largely overlapped with the confidence intervals of the estimates made by Macías-Hernández *et al.* (2008).

Analysis of morphological variation

Few variables exhibited evidence of sexual dimorphism across the species examined (Fe1, Esc and Fang in *D. spinidorsum*; Fe1 in *D. alegranzaensis*; Fe1 and Q2 in *D. aneris* sp. nov.; and Fe1 and Mt4 in *D. longa*). We interpreted significant sex differences among the variables as random sampling variability due to the lack of a general pattern of sexual dimorphism, although some caution should be exercised regarding the Fe1 (significantly differ-

ent between sexes in four species). Further analyses were conducted considering individuals of both sexes of each species. The Kruskal–Wallis test revealed significant interspecific differences in all morphological variables. The Wilcoxon matched pairs test detected significant differ- 895 ences in body size (P1) between all species compared except for the species pairs: D. alegranzaensis - D. nesiotes (Z = 0.459; P = 0.65), D. alegranzaensis – D. aneris sp. nov. (Z = 1.172; P = 0.24) and D. mahan sp. nov. – D. spinidorsum (Z = 0.178; P = 0.859). The first PCA axis 900 accounted for 31.41% of the variance and was associated with the chelicera and fang lengths. The second axis accounted for 58.52% of the total variance and was associated with appendage length (Fe1, Mt4; Fig. 33). In the PCA plot, D. mahan sp. nov. clearly stands apart from all 905 the other species. The Bray-Curtis similarity cluster defines four main groups: small species (D. sanborondon), medium-sized species (D. alegranzaensis, D. nesiotes and D. aneris sp. nov.), which is a large species (D. longa, D. spinidorsum and D. simbeque sp. nov.) and D. mahan sp. 910 nov., a large species with long appendages (Fig. 34).

Discussion

Morphology represented the single major source of evidence to delimit species boundaries until the mid-20th century (Coyne, 1994). However, relying solely on morphological characters tends to oversimplify and underestimate diversity (Bond *et al.*, 2001; Bickford *et al.*, 2007). Continuous or barely partitioned diversity (i.e. polymorphism), low variability (cryptic species), sex- or life stage-restricted

Fig 33. Principal components analysis. Plot of the first two discriminant axes, with the 95% of score variance on each axis.

920 diagnosis, or simple lack of expertise may hinder the use of morphology for species delimitation.

Species may arise through a plethora of different processes and circumstances, making species recognition and delimitation a daunting task based on any single data set.

925 In recent years, there is an emerging consensus that the multifaceted nature of species can only be understood by reconciling evidence provided by multiple independent disciplines. The term 'integrative taxonomy' has been coined to refer to such a combined approach (Dayrat, 2005; Padial 930 *et al.*, 2010; Schlick-Steiner *et al.*, 2010).

A former taxonomic revision of the endemic eastern Canarian *Dysdera* highlighted an unusual variability in the vulval morphology of the species *D. nesiotes* (see figs. 59–62 in Arnedo *et al.*, 2000), which was interpreted as intraspecific

935 polymorphism. In the context of a molecular phylogeny of the group, Macías-Hernández *et al.* (2008) pointed out that *D. nesiotes* might actually include three independent lineages that were overlooked in the former revisionary work. The morphological study of a larger sample of specimens in

940 combination with molecular data, geographic distribution

and ecological preference data has now allowed us to reinterpret the morphological polymorphism observed in these species and to delimit and formally describe three new taxa.

Genetic divergence is not necessarily related to morphological differentiation (e.g. Orr & Smith, 1998). Signifi-945 cant genetic divergences may underlie morphologically homogeneous species, as seen in cryptic species complexes (Bond et al., 2001; Hedin & Wood, 2002; Sinclair et al., 2004; Boyer et al., 2007). However, in adaptive radiations, remarkable phenotypic differentiation may occur in the ab- 950 sence of clear genetic discontinuities, as exemplified by the African cichlid fishes (Nagl et al., 1998). Of the three new species described here, D. mahan sp. nov. exhibits the greatest morphological differences compared with its sister taxa (see Figs 33, 34). However, these two species 955 exhibit the lowest number of pairwise genetic divergences of any sister species pair (3.6% in mtDNA), and both share common alleles in ITS-2 and H3. The low degree of genetic differentiation suggests a relatively recent time of divergence, further confirmed by the molecular clock dat- 960 ing (0.9 Mya, 0.6–1.6 Mya), representing the most recent

Fig 34. Dendrogram showing species similarity scores derived from somatic measurements estimated across a hierarchical agglomerative cluster using the Bray–Curtis distance.

speciation event in the group. Newly formed species achieve genealogical exclusivity in mitochondrial DNA long before they become distinct in nuclear markers, due to
higher substitution rates and a smaller effective population size (Moore, 1995). Therefore, the retention of unsorted ancestral polymorphism seems the most plausible explanation for the lack of genealogical exclusivity in the nuclear genes. The habitat occupied by *D. mahan* sp. nov., the inter-

- 970 tidal zone in pebble beaches, is unique among the Canarian *Dysdera* and represents the only true case of an ecological shift in this large species radiation. The decoupling of genetic divergence and morphological differentiation observed in this case could be the result of a natural selection
- 975 acting on phenotypic traits that are adaptive for this unusual environment (Dieckmann, 2004). In spiders, genitalia are the most important source of diagnostic characters, which implies that genitalia have diverged rapidly relative to other structures (Eberhard, 1985). However, the absence of di-
- 980 agnostic characters in the male bulb of *D. mahan* sp. nov. compared with *D. nesiotes* and *D. aneris* sp. nov. provides evidence for the rapid evolution of somatic morphology in the former species and, hence, for the involvement of natural selection.

Dysdera aneris sp. nov. lies at the other end of a putative 985 gradient of negatively correlated genetic and morphological differentiation. This species is well characterized from a genetic standpoint, shows high mtDNA pairwise divergences compared with closely related taxa (7.3-10%), and all its mtDNA and nuclear alleles are exclusive (except 990 28S). Nevertheless, this species had been previously overlooked and misidentified as Dysdera nesiotes, which is not even its sister taxa according to the mitochondrial data. In fact, molecular markers provided crucial evidence to diagnose the new species based on vulval characters that were 995 previously misinterpreted as intraspecific polymorphism. Significant molecular divergences in the absence of morphological changes are common in spider groups with poor dispersal capabilities, which therefore, have geographically isolated populations that are subject to similar environmen- 1000 tal conditions (Bond et al., 2001; Hedin, 2001). An infrequent, long-range dispersal event allowed D. aneris sp. nov. to diverge in isolation on an island with a similar environment and selective forces to the ancestral area, which preserved the original phenotype. Molecular dating puts 1005 an upper limit on the colonization of the Salvage Islands by Dysdera of approximately 2.1 Mya (1.5-2.5), similar to what has been found in the wall lizard Teira dugesii (Brehm et al., 2003). This data corroborates a previous suggestion regarding the late Pliocene origin of the present-1010 day biota of the Salvage Islands, following subaerial volcanism after island submergence (Geldmacher et al., 2001).

The third new species described in this paper, D. simbeque sp. nov. co-exists on the same island with its sister 1015 species, although they do not overlap in their distribution range. These two species significantly differ from each other in body size and exhibit slight genitalia differences. Size segregation in these species is difficult to explain because the two species share the same ecological regime and are 1020 both syntopic with a third endemic, D. nesiotes. The significantly larger size of D. simbeque sp. nov. compared with D. nesiotes is in accordance with the expectations of trait segregation in sympatric species to avoid resource competition. The range size of D. nesiotes, on the other hand, fully 1025 overlaps with that of D. alegranzaensis. A comparative phylogeographic study of the two species is currently underway to investigate the patterns of vicariance and secondary sympatry (Macías-Hernández et al., in prep) that may explain the coexistence of close relatives with virtually identical 1030 morphology.

The use of DNA sequences as a complement to traditional morphology-based taxonomy represents an invaluable resource for phylogenetics (Tautz *et al.*, 2003). In addition, the advisable use of multiple loci for species delimi- 1035 tation improves the chances of obtaining more reliable trees (Maddison, 1997), and the patterns of congruence among multiple unlinked loci offer insights into relevant evolutionary processes, such as hybridization and introgression

- 1040 (Funk & Omland, 2003). Our results illustrate that the simultaneous analysis of mitochondrial and nuclear genes improves the resolution of the tree topology and increases clade support. The ILD test, however, revealed significant incongruence between mtDNA and nDNA genes. The main
- 1045 areas of disagreement are the position of *D. longa* and *D. aneris* sp. nov., although an ILD test run on the clade including the species *D. aneris* sp. nov., *D. nesiotes*, *D. spinidorsum* and *D. mahan* sp. nov. was not significant. Instances of incongruence between mtDNA and nDNA genes are not
- 1050 uncommon among arthropods and other organisms (Funk & Omland, 2003). Several causes have been put forward to explain the apparent incongruence between mitochondrial and nuclear markers, including incomplete lineage sorting of ancestral polymorphisms and introgressive hybridization
- 1055 (Maddison, 1997), homoplasy in the data (Baker & De-Salle, 1997), and differences in analytical and methodological procedures (Brower, 1996). Although shared ancestral polymorphism and hybridization are difficult to detect in the first stages of the speciation process (Sota & Vogler,
- 2001), hybridization is more a likely cause of incongruence if populations co-occurred in sympatry (Rokas *et al.*, 2003). However, all the species investigated in this study with present-day overlapping distributions were found to be genealogically exclusive in both mitochondrial and nu-
- 1065 clear markers. *Dysdera nesiotes*, on the other hand, is paraphyletic to *D. aneris* sp. nov. based on nuclear markers, but the two species are separated by more than 165 km of open sea, which rules out the involvement of hybridization. The patterns of non-monophyly in nuclear markers suggest that
- 1070 incomplete lineage sorting may be a better explanation of the incongruence between genome partitions. The independent networks of each nuclear gene exhibited incongruent patterns of reticulation and allele sharing among the species *D. nesiotes*, *D. aneris* sp. nov., *D. spinidorsum* and *D. ma*-
- 1075 *han* sp. nov. The sister-group relationship of *D. aneris* sp. nov. and *D. nesiotes*, which was supported by nuclear genes, could, hence, be the result of the retention in *D. nesiotes* and *D. aneris* sp. nov. of nuclear alleles already present in the common ancestor shared with closer relatives. A similar
- 1080 argument could be invoked to explain the incongruent position of *D. longa* in the trees recovered from each genome partition. Incomplete lineage sorting has been proposed in a variety of organisms as the main factor causing incongruence between species and gene trees and among unlinked
- 1085 loci (Funk & Omland, 2003). The faster rate of fixation of ancestral mtDNA polymorphisms compared with nuclear genes suggests that mitochondrial gene trees are more likely to reflect true species relationships than a nuclear-encoded gene (Moore, 1995, 1997). However, in the presence of
- 1090 gene flow between diverging populations, mtDNA may be homogenized between the populations more readily than nuclear DNA, and thus, mtDNA may appear to be paraphyletic when nuclear genes may be monophyletic (Ballard & Rand, 2005).

In the present study, the combined analyses used re-1095 solve instances of incongruence between genomic partitions mostly in favour of the mitochondrial partition. This may simply reflect the larger amount of variable characters in the mtDNA partition, as suggested by the higher pairwise divergences observed (Table 10, see 1100 supplementary material which is available on the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...).

Nevertheless, the number of nodes in the combined tree with negative PBS values is low, and it is sim-1105 ilar in both genomic partitions (2 and 3 for mitochondrial and nuclear genes, respectively (Table 9, see supplementary material which is available on the Supplementary tab of the article's Informaworld page at http://www.informaworld.com/mpp/uploads/tsab...). 1110

In fact, only the *H3* dataset shows negatively partitioned Bremer support values at combined topology node 15 (Fig. 32), which is the major area of disagreement between partitions, while the other nuclear partitions are either positive or zero at this node. The nuclear genes may not actually be 1115 as incongruent with the mitochondrial genes as suggested by the ILD. It has been shown that the ILD test is prone to reporting significant conflict between character partitions when they differ only in the amount of noise (Quicke *et al.*, 2007), there are few characters, or the substitution rate is 1120 not homogeneous (Darlu & Lecointre, 2002). However, the high support for the conflicting clade between the genome partitions suggests otherwise (Mason-Gamer & Kellogg, 1996).

1125

Acknowledgements

We would like to thank Mercè Loukota and Leticia Bidegaray, who assisted with the laboratory work. We are indebted to Heriberto López, Salvador de la Cruz, Helena Morales, Antonio J. Pérez and Nayra Txasco for fieldwork assistance. Manuel Arechavaleta, Isamberto Silva 1130 and Laura García provided specimens from the Salvage Islands. Cesc Múrria contributed valuable expertise on statistical methods. We also thank Norman Platnick, Jason Bond and Carles Ribera for their valuable comments that greatly helped to improve the quality of this pa-1135 per. The Cabildos of Fuerteventura and Lanzarote and the Parque Natural da Madeira authorized the collecting permits for the protected natural areas, and kindly provided boat transport and accommodation to visit the islets. NMH was supported by a graduate grant from 1140 the Autonomous Government of the Canary Islands. This project was funded by the Spanish Ministry of Education and Science grant BOS2003-05876 (MA&PO). Further funding support was provided by project 2005SGR00045 and an ICREA Academia award for excellence in re-1145 search from the Autonomous Government of Catalonia to MA.

References

1160

Arnedo, M.A., Oromí, P., Múrria, C., Macías-Hernández, N.

- 1150 & RIBERA, C. 2007. The dark side of an island radiation: Systematics and evolution of troglobitic spiders of the genus *Dysdera* (Araneae, Dysderidae) in the Canary Islands. *Invertebrate Systematics* **21**, 623–660.
 - ARNEDO, M.A., OROMÍ, P. & RIBERA, C. 2000. Systematics of the
- 1155 genus *Dysdera* (Araneae, Dysderidae) in the Eastern Canaries. *Journal of Arachnology* **28**, 261–292.
 - ARNEDO, M.A., OROMÍ, P. & RIBERA, C. 2001. Radiation of the spider genus *Dysdera* (Araneae, Dysderidae) in the Canary Islands: Cladistic assessment based on multiple data sets. *Cladistics* 17, 313–353.
- ARNEDO, M.A. & RIBERA, C. 1999. Radiation of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands: The island of Tenerife. Journal of Arachnology 27, 604–662.
- BAKER, R.H. & DESALLE, R. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 46, 654–673.
 - BALLARD, J.W.O. & RAND, D.M. 2005. The population biology of mitochondrial DNA and its phylogenetic implications. *Annual Review of Ecology, Evolution and Systematics* 36, 621–642.
- 1170 BERLAND, L. 1936. Mission de M. A. Chevalier aux îles du Cap Vert (1934). 1. Araignées. *Revue Française d'Entomologie* 3, 67–88.
 - BICKFORD, D., LOHMAN, D.J., SODHI, N.S., NG, P.K.L., MEIER, R., WINKER, K., INGRAM, K.K. & DAS, I. 2007. Cryptic species
- 1175 as a window on diversity and conservation. *Trends in Ecology* and Evolution **22**, 148–155.
 - BIDEGARAY-BATISTA, L., MACÍAS-HERNÁNDEZ, N., OROMÍ, P. & ARNEDO, M.A. 2007. Living on the edge: demographic and phylogeographical patterns in the woodlouse-hunter spider Dysdera lancerotensis Simon, 1907 on the eastern vol-
- 1180 Dysdera lancerotensis Simon, 1907 on the eastern volcanic ridge of the Canary Islands. Molecular Ecology 16, 3198–3214.
 - BOND, J.E., HEDIN, M.C., RAMIREZ, M.G. & OPELL, B.D. 2001. Deep molecular divergence in the absence of morphological
- 1185 and ecological change in the Californian coastal dune endemic trapdoor spider *Aptostichus simus*. *Molecular Ecology* **10**, 899–910.
 - BOND, J.E. & STOCKMAN, A.K. 2008. An integrative method for delimiting cohesion species: Finding the population-species
- 1190 interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. *Systematic Biology* **57**, 628–646.
 - Borges, P.A.V., Abreu, C., Aguiar, A.M.F., Carvalho, P., Fontinha, S., Jardim, R., Melo, I., Oliveira, P., Sequeira,
- 1195 M.M., SÉRGIO, C., SERRANO, A.R.M., SIM, M. & VIEIRA, P. 2008. Terrestrial and Freshwater biodiversity of Madeira and Selvagens archipelagoes. In: BORGES, P.A.V., ABREU, C., AGUIAR, A.M.F., CARVALHO, P., JARDIM, R., MELO, I., OLIVEIRA, P., SÉRGIO, C., SERRANO, A.R.M. & VIEIRA, P., Eds.,
- 1200 *A list of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos.* Direcção Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo, pp. 13–26.
- BORGES, P.A.V., CUNHA, R., GABRIEL, R., MARTINS, A.M.F., SILVA,
 L., VIEIRA, V., DINIS, F., LOURENÇO, P. & PINTO, N. 2005. Description of the Terrestrial Azorean Biodiversity. In: BORGES,
 P.A.V., CUNHA, R., GABRIEL, R., MARTINS, A.M.F., SILVA, L. & VIEIRA, V., Eds., A List of the Terrestrial Fauna (Mollusca and Arthropoda) and Flora (Bryophyta, Pteridophyta and Sper-
- 1210 *matophyta) from the Azores.* Direcção Regional de Ambiente and Universidade dos Açores, Horta, Angra do Heroísmo and Ponta Delgada, pp. 21–68.

- BOYER, S.L., BAKER, J.M. & GIRIBET, G. 2007. Deep genetic divergences in *Aoraki denticulata* (Arachnida, Opiliones, Cyphophthalmi): a widespread 'mite harvestman' defies DNA 1215 taxonomy. *Molecular Ecology* 16, 4999–5016.
- BREHM, A., JESUS, J., SPINOLA, H., ALVES, C., VICENTE, L. & HARRIS, D.J. 2003. Phylogeography of the Madeiran endemic lizard *Lacerta dugesii* inferred from mtDNA sequences. *Molecular Phylogenetics and Evolution* 26, 222–230. 1220
- BROWER, A. 1996. Combining data in phylogenetic analysis. Trends in Ecology and Evolution **11**, 334–335.
- BROWER, A.V.Z. 1994. Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA evolution. *Proceedings* 1225 of the National Academy of Sciences, USA 91, 6491–6495.
- CARRACEDO, J.C. & DAY, S. 2002. *Classic Geology in Europe 4: Canary Islands*. Terra Publishing, Harpenden, Hertfordshire, UK.
- CLARKE, K.R. & WARWICK, R.M. 1994. A Framework for Studying 1230 Changes in Community Structure. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth.
- COELLO, J., CANTAGREL, J.M., HERNÁN, F., FUSTER, J.M., IBARROLA, E., ANCOCHEA, E., CASQUET, C., JAMOND, C., DÍAZ DE TERÁN, 1235 J.R. & CENDRERO, A. 1992. Evolution of the eastern volcanic ridge of the Canary Islands based on new K-Ar data. *Journal* of Volcanology and Geothermal Research 53, 251–274.
- COLEMAN, C.O. 2003. 'Digital inking': how to make perfect line drawings on computers. Organisms, Diversity and Evolution 1240 3, 303–304.
- COYNE, J. 1994. Ernst Mayr and the origin of species. *Evolution* **48**, 19–30.
- DALLWITZ, M.J. 1980. A general system for coding taxonomic descriptions. *Taxon* 29, 41–46. 1245
- DALLWITZ, M.J., PAINE, T.A. & ZURCHER, E.J. 1999. User's Guide to the DELTA Editor. http://delta-intkey.com (accessed 20 October 2010).
- DARLU, P. & LECOINTRE, G. 2002. When does the incongruence length difference test fail? *Molecular Biology and Evolution* 1250 19, 432.
- DAYRAT, B. 2005. Toward integrative taxonomy. *Biological Journal of the Linnean Society* **85**, 407–415.
- De QUEIROZ, K. 1998. The general lineage concept of species, species criteria, and the process of speciation. A concep-1255 tual unification and terminological recommendations. In: HOWARD, D.J. & BERLOCHER, S.H., Eds., *Endless Forms. Species and Speciation*. Oxford University Press, New York, pp. 57–75.
- De QUEIROZ, K. 2007. Species concepts and species delimitation. 1260 Systematic Biology 56, 879–886.
- DEELEMAN-REINHOLD, C.L. & DEELEMAN, P.R. 1988. Revision des Dysderinae. *Tijdschrift voor Entomologie* **131**, 141–269.
- DENIS, J. 1963. Spiders from the Madeira and Selvage Islands. Boletim do Museu Municipal do Funchal 17, 29–48. 1265
- DESALLE, R., EGAN, M.G. & SIDDALL, M. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. *Philo-sophical Transactions of the Royal Society B: Biological Sciences* 360, 1905–1916.
- DESALLE, R., FREEDMAN, T., PRAGER, E.M. & WILSON, A.C. 1987. 1270 Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian *Drosophila*. *Journal of Molecular Evolution* 26, 157–164.
- DIECKMANN, U. 2004. Adaptive Speciation. Cambridge University Press, New York. 1275
- DRUMMOND, A.J. & RAMBAUT, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology* 7, 214.

EBERHARD, W.G. 1985. Sexual Selection and Animal Genitalia. Harvard University Press, Cambridge, USA.

- ERESHEFSKY, M. 1992. The Units of Evolution. Essays on the Nature of Species. MIT Press, Cambridge, MA.
 - FUNK, D.J. & OMLAND, K.E. 2003. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with in-
- 1285 sights from animal mitochondrial DNA. *Annual Review of Ecology, Evolution, and Systematics* **34**, 397–423.
 - GELDMACHER, J., HOERNLE, K., VAN DEN BOGAARD, P., ZANKL, G. & GARBE-SCHONBERG, D. 2001. Earlier history of the ≥70-Ma-old Canary hotspot based on the temporal and geochem-
- 1290 ical evolution of the Selvagen Archipelago and neighboring seamounts in the eastern North Atlantic. *Journal of Volcanology and Geothermal Research* 111, 55–87.
 - HARRISON, R.G. 1998. Linking evolutionary pattern and process.In: HOWARD, D.J. & BERLOCHER, S.H., Eds., *Endless Forms*. Oxford University Press, New York, pp. 19–31.
 - HEBERT, P.D.N., CYWINSKA, A., BALL, S.L. & DEWAARD, J.R. 2003. Biological identification through DNA barcodes. *Proceedings of the Royal Society B: Biological Sciences* 270, 313–321.
- 1300 HEDIN, M. & WOOD, D.A. 2002. Genealogical exclusivity in geographically proximate populations of *Hypochilus thorelli* Marx (Araneae, Hypochilidae) on the Cumberland Plateau of North America. *Molecular Ecology* **11**, 1975–1988.
- HEDIN, M.C. 2001. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus *Hypochilus* (Araneae: Hypochilidae). *Molecular Phylogenetics and Evolution* 18, 238–251.
 - HOCHKIRCH, A. & GÖZIG, Y. 2009. Colonization and speciation on volcanic islands: phylogeography of the flightless grasshopper
- 1310 genus Arminda (Orthoptera, Acrididae) on the Canary Islands. Systematic Entomology 34, 188–197.
 IZQUIERDO, I., MARTÍN, J.L., ZURITA, N. & ARECHAVALETA, M.
- IZQUIERDO, I., MARTIN, J.L., ZURITA, N. & ARECHAVALETA, M.
 2004. Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Consejería de Medio Ambiente y
 Ordenación Territorial, Gobierno de Canarias.
 - KRIJGSMAN, W., HILGEN, F.J., RAFFI, I., SIERRO, F.J. & WILSON, D.S. 1999. Chronology, causes and progression of the Messinian salinity crisis. *Nature* 400, 652–655.
- LEGENDRE, P. & LEGENDRE, L. 1998. *Numerical Ecology*. Elsevier 1320 B. V., Amsterdam.
- LOSOS, J.B., JACKMAN, T.R., LARSON, A., DE QUEIROZ, K. & RO-DRIGUEZ SCHETTINO, L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. *Science* **279**, 2115–2118.
- 1325 MACÍAS-HERNÁNDEZ, N., OROMÍ, P. & ARNEDO, M.A. 2008. Patterns of diversification on old volcanic islands as revealed by the woodlouse-hunter spider genus *Dysdera* (Araneae, Dysderidae) in the eastern Canary Islands. *Biological Journal of the Linnean Society* 94, 589–615.
- 1330 MADDISON, W. 1997. Gene trees in species trees. Systematic Biology 46, 523.
 - MASON-GAMER, R.J. & KELLOGG, E.A. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). *Systematic Biology* **45**, 524–545.
- 1335 MAYDEN, R.L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. In: CLARIDGE, M.F., DAWAH, H.A. & WILSON, M.R., Eds., Species: The Units of Biodiversity. Chapman and Hall, London, pp. 381–424.

MOORE, W. 1997. Mitochondrial-gene trees versus nuclear-gene trees, a reply to Hoelzer. *Evolution* **51**, 627–629.

MOORE, W.S. 1995. Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. *Evolution* 49, 718–726.

- MORANDO, M., AVILA, L.J. & SITES, J.W. 2003. Sampling strategies for delimiting species: genes, individuals, and populations 1345 in the *Liolaemus elongatus-kriegi* complex (Squamata: Liolaemidae) in Andean–Patagonian South America. *Systematic Biology* 52, 159–185.
- MYERS, N., MITTERMEIER, R.A., MITTERMEIER, C.C., DA FONSECA, G.A. & KENT, J. 2000. Biodiversity hotspots for conservation 1350 priorities. *Nature* **403**, 853–858.
- NAGL, S., TICHY, H., MAYER, W.E., TAKAHATA, N. & KLEIN, J. 1998. Persistence of neutral polymorphisms in Lake Victoria cichlid fish. *Proceedings of the National Academy of Sciences*, USA 95, 14238–14243.
- ORR, M.R. & SMITH, T.B. 1998. Ecology and speciation. *Trends* in Ecology and Evolution 13, 502–505.
- PADIAL, J., MIRALLES, A., DE LA RIVA, I. & VENCES, M. 2010. The integrative future of taxonomy. *Frontiers in Zoology* 7, 16.
- PLATNICK, N.I. 2010. The World Spider Catalog. American 1360 Museum of Natural History, New York, online at http:// research.amnh.org/entomology/spiders/catalog/GENERIC. IND.html, [accessed 24 February 2010].
- POSADA, D. 2008. jModelTest: Phylogenetic model averaging. *Molecular Biology and Evolution* 25, 1253–1365 1256.
- QUICKE, D.L.J., JONES, O.R. & EPSTEIN, D.R. 2007. Correcting the problem of false incongruence due to noise imbalance in the Incongruence Length Difference (ILD) Test. *Systematic Biology* 56, 496–503.
- ROKAS, A., MELIKA, G., ABE, Y., NIEVES-ALDREY, J., COOK, J. & STONE, G. 2003. Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. *Molecular Phylogenetics and Evo-* 1375 *lution* 26, 36–45.
- RONQUIST, F. & HUELSENBECK, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–1574.
- SANDERSON, M.J. 2002. Estimating absolute rates of molec-1380 ular evolution and divergence times: a penalized likelihood approach. *Molecular Biology and Evolution* **19**, 101– 109.
- SANDERSON, M.J. 2003. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular 1385 clock. *Bioinformatics* **19**, 301–302.

 SCHLICK-STEINER, B.C., STEINER, F.M., SEIFERT, B., STAUFFER, C., CHRISTIAN, E. & CROZIER, R.H. 2010. Integrative taxonomy: A multisource approach to exploring biodiversity. *Annual Review of Entomology* 55, 421–438.

- SIMON, E. 1883. Études Arachnologiques XIV^e Mèm., materiaux pour servir a la faune arachnologique des îles de l'Océan Atlantique. Annales de la Société Entomologique de France 6, 294–298.
- SIMON, E. 1912. Arachnides recueillis par M.L. Garreta à l'île 1395 Grande-Salvage. Bulletin de la Societe Entomologique de France 2, 59–61.
- SINCLAIR, E.A., BEZY, R.L., BOLLES, K., CAMARILLO R, J.L., CRAN-DALL, K.A. & SITES, J.W. 2004. Testing species boundaries in an ancient species complex with deep phylogeographic 1400 history: Genus Xantusia (Squamata: Xantusiidae). American Naturalist 164, 396–414.
- SITES, J.W. & MARSHALL, J.C. 2003. Delimiting species: A renaissance issue in systematic biology. *Trends in Ecology and Evolution* 18, 462–470. 1405
- SITES, J.W. & MARSHALL, J.C. 2004. Operational criteria for delimiting species. Annual Review of Ecology, Evolution and Systematics 35, 199–228.

. .

1295

1280

- SOTA, T. & VOGLER, A. 2001. Incongruence of mitochondrial and
- 1410 nuclear gene trees in the carabid beetles *Ohomopterus*. Systematic Biology **50**, 39–59.
 - SPSS INC. 2001. SIGMAPLOT. SPSS Inc., Chicago.

1415

- STAMATAKIS, A. 2006. RAXML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690.
- STATSOFT INC. 1999. STATISTICA for Windows. StatSoft Inc., Tulsa.
 - STOCKMAN, A. & BOND, J.E. 2007. Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. *Molecular Ecology* **16**, 3374–3392.
- 1420 terchangeability. Molecular Ecology 16, 3374–3392.
 TAITI, S. & LÓPEZ, H. 2008. New records and species of Halophilosciidae (Crustacea, Isopoda, Oniscidea) from the Canary Islands (Spain). In: ZIMMER, M., CHARFI CHEIKHROUHA, F. & TAITI, S., Eds., Proceedings of the Inter1425
- 1425 *national Symposium of Terrestrial Isopod Biology—ISTIB-07*. Shaker-Verlag, Aachen, pp. 43–58.
 - TAMURA, K., DUDLEY, J., NEI, M. & KUMAR, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Molecular Biology and Evolution* 24, 1596–1599.
- 1430 TAUTZ, D., ARCTANDER, P., MINELLI, A., THOMAS, R.H. & VOGLER, A.P. 2003. A plea for DNA taxonomy. *Trends in Ecology and Evolution* 18, 70–74.

- TEMPLETON, A.R. 1994. The role of molecular genetics in speciation studies. In: SCHIERWATER, B., STREIT, B., WAGNER, G.P. & DESALLE, R., Eds., *Molecular Ecology and Evolution*: 1435 *Approaches and Applications*. Birkhäuser-Verlag, Basel, pp. 455–477.
- VILLACORTA, C., JAUME, D., OROMÍ, P. & JUAN, C. 2008. Under the volcano: phylogeography and evolution of the cave-dwelling *Palmorchestia hypogaea* (Amphipoda, Crustacea) at La Palma 1440 (Canary Islands). *BMC Biology* 6, 7.
- VOGLER, A. & MONAGHAN, M. 2007. Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research 45, 1–10.
- WIENS, J.J. & PENKROT, T.A. 2002. Delimiting species using DNA 1445 and morphological variation and discordant species limits in spiny lizards (*Sceloporus*). *Systematic Biology* **51**, 69– 91.
- WILEY, E.O. 1981. Phylogenetics. The Theory and Practice of Phylogenetic Systematics. John Wiley & Sons, New York. 1450
- WUNDERLICH, J. 1991. Die Spinnen-fauna der Makaronesischen Inseln. Beiträge zur Araneologie 1, 1– 619.
- WUNDERLICH, J. 1994. Zu Ökologie, Biogeographie, Evolution und Taxonomie einiger Spinnen der Makaronesischen Inseln. 1455 Beiträge zur Araneologie 4, 385–439.