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Abstract
The presence of human pharmaceuticals in the environment has garnered significant research attention because these compounds
may exert therapeutic effects on exposed wildlife. Yet, for many compounds, there is still little research documenting their
stability in the water column and uptake in organism tissues. Here, we measured the uptake and stability of methylphenidate
(Ritalin®, a frequently prescribed central nervous system stimulant) and its primary metabolite, ritalinic acid, in (1) water only or
(2) with nine-spine stickleback and water louse. Methylphenidate degraded to ritalinic acid in both studies faster at a higher
temperature (20 °C versus 10 °C), with concentrations of ritalinic acid surpassing methylphenidate after 48–100 h, depending on
temperature. The concentration of methylphenidate in stickleback was highest at the first sampling point (60 min), while the
concentration in water louse tissues reached comparatively higher levels and peaked after ~ 6 days. Neither stickleback nor water
louse took up ritalinic acid in tissues despite being present in the water column. Our findings provide valuable data for use in
future risk assessment of methylphenidate and will aid in the design of studies aimed at measuring any ecotoxicological effects
on, for example, the behaviour or physiology of aquatic organisms.
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Introduction

The presence of pharmaceuticals in the environment has
drawn widespread concern from researchers and environmen-
tal managers over the impacts that exposure to

pharmaceuticals might have on, for example, antibiotic resis-
tance and aquatic wildlife (Boxall et al. 2012; Brodin et al.
2014). Many pharmaceutical compounds are present in the
environment, but attention on compounds that modulate hu-
man behaviour—such as antidepressants, anxiolytics, or
stimulants—has recently grown (Calisto and Esteves 2009;
Brodin et al. 2014; Saaristo et al. 2018). The biological targets
of many pharmaceuticals are shared between humans and
aquatic vertebrates (Gunnarsson et al. 2008). Therefore, unin-
tended environmental exposure to pharmaceuticals in the wild
may cause subtle changes to animal behaviour (e.g., predator
avoidance, reproduction) that could have important and po-
tentially detrimental effects on fitness in the wild.

One such compound with the potential to modulate behav-
iour is methylphenidate (e.g., Ritalin®, Concerta®): a central
nervous system stimulant prescribed to promote executive
functions such as attention and focus in humans.
Methylphenidate is a commonly prescribed treatment for at-
tention deficit hyperactivity disorder (ADHD), and the non-
medical, recreational use of methylphenidate has been in-
creasing (McCabe et al. 2005; Chai et al. 2012).
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Methylphenidate increases dopaminergic and norepinephric
transmission via inhibiting the reuptake of these catechol-
amines from the synaptic cleft (Volkow et al. 2002).
Following a standard dose (18 mg), up to 80% is excreted as
ritalinic acid (α-phenyl-2-piperidine acetic acid) that has little
pharmacological activity (Faraj et al. 1974; Concerta
Prescribing Information 2013). Recently, Endres et al.
(2017) showed that exposure to environmentally relevant con-
centrations of methylphenidate reduced cortisol (i.e., stress)
and inhibited anxiety-like behaviours (e.g., freezing, hiding)
in stressed zebrafish (Danio rerio). Reductions in anxiety be-
haviours have been noted in adult guppies (Poecilia
reticulata) exposed to 250 ng/L (De Serrano et al. 2016) and
in zebrafish exposed to a much higher concentration (50 mg/
L) as embryos (Levin et al. 2011).

Methylphenidate has been detected in treated wastewater
effluents at low concentrations (< 10 ng/L), and this is, in part,
because it is readily transformed before excretion (Letzel et al.
2010; van der Aa et al. 2013; Du et al. 2014; Watkins et al.
2014; Bean et al. 2018). However, in untreated wastewater,
levels up to 1500 ng/L have been found (Burgard et al. 2013).
The primary metabolite, ritalinic acid has been detected at
concentrations ranging from 50 to 300 ng/L in treated effluent
(Letzel et al. 2010; Burgard et al. 2013; Oliveira et al. 2015).
Methylphenidate and ritalinic acid have low octanol-water
partitioning coefficients; methylphenidate (0.20) and ritalinic
acid (− 1.1), and uptake occurs mainly from the water phase
(US EPA EPISuite n.d.). Their predicted bioconcentration fac-
tors are, however, very low (3.2), which indicates low expect-
ed levels of these compounds in aquatic biota (US EPA
EPISuite n.d.).

Given recent and growing research attention on meth-
ylphenidate and ritalinic acid as environmental pollutants,
more detailed investigations of their stability in the water
column and concentrations in the tissues of aquatic organ-
isms are needed. Basic data on the stability of compounds
in water and uptake in tissue is needed to effectively de-
sign laboratory tests. To support future studies on effects
on aquatic organisms, we measured concentrations of
methylphenidate and ritalinic acid in the water column
under static laboratory conditions, with and without the
presence of biota over 2 weeks. In our biota study, we
measured the tissue uptake of both compounds in muscle
tissue of the nine-spine stickleback (Pungitius pungitius)
and whole-body homogenates of water louse (Asellus
aquaticus) to compare uptake in a vertebrate and inverte-
brate. Both species are widespread in temperate freshwa-
ter environments in North America, Europe, and Asia,
making these results ecologically relevant and widely ap-
plicable. We included a temperature treatment (10 °C and
20 °C) in this study to test how temperature affects the
degradation of both compounds in the exposure environ-
ment and uptake in tissues.

Methods

Preparation of stock solutions

Stock solutions were prepared by dissolving methylphenidate
hydrochloride (CAS 298-59-9; Merck Darmstadt, Germany) in
crystalline form inMilli-Q ultra-pure water (Millipore advantage
A10, Billerica, USA), acidifiedwith 0.1% formic acid (Suprapur,
Merck KGaA), and mixed for 5 min using an ultrasonic bath.
The pKa of methylphenidate is 9.5 (SciFinder), and the stock
solution was acidified to a pH of ~ 2.7 to keep the compound
in the neutral form. The experiments were conducted at ~ pH 7
conditions, which means that the level of the ionized form is
negligible. The stock solution for study 1 (water only) was pre-
pared on December 15, 2017, and the exposure began the next
day. For study 2 (water and biota), the stock solution was pre-
pared on January 29, 2018, and the exposures began on the same
day.

Study 1: static water only

The stability of methylphenidate and breakdown to ritalinic
acid was first measured in water without biota. A total of
1870 ng/L (nominal concentration) of methylphenidate
(1 mL of the stock solution) was added to a glass aquarium
filled with 20 L of ground water. The tank was aerated and
kept at 20 °C (ambient room temperature). Water was sampled
at 0 min (immediately after dosing), 5 min, 15 min, 45 min,
90 min, 4 h, 10 h, 24 h, 2 days, 3 days, 4 days, 5 days, 7 days,
and 12 days. This exposure was conducted in a windowless
room with a light-dark cycle of 13L:11D.

Study 2: static water + biota

Nine-spine stickleback were collected using umbrella traps
from ponds in Röbäck, Sweden, in July 2017. Fish were
housed in a large, aerated, ground water flow-through tank
(1500 L) until the start of the experiment. Fish were fed frozen
chironomid larvae until satiation once daily. Water louse were
collected using sweep nets from Djupsundsbäcken near
Holmsund, Sweden, in January 2018. Water louse were kept
in aerated containers with detritus (predominately alder leaf
litter) until the start of the experiment.

Stickleback and water louse were exposed to 187 ng/L (nom-
inal concentration) methylphenidate at two temperature treat-
ments: 10 °C (in a climate chamber) and 20 °C (ambient room
temperature). Both exposures were maintained at the same light
cycle used in study 1. Organisms were exposed under static
conditions using three replicate glass aquaria filled with 20 L
water. The aquaria were equipped with an airstone and two ce-
ramic clay pots for shelter in each temperature treatment. Fish
were exposed in two tanks, while water louse were exposed
separately in the remaining tank. Water from each tank was

9372 Environ Sci Pollut Res (2019) 26:9371–9378



sampled at 0 min (immediately after dosing), 15 min, 30 min,
60 min, 4 h, 8 h, 24 h, 3 days, 5 days, 7 days, 9 days, 10 days,
11 days, 12 days, and 13 days. Three to six water louse and three
to six fish were sampled at each of the following time points:
60 min, 4 h, 8 h, 24 h, 3 days, 5 days, 7 days, 9 days, 10 days,
11 days, 12 days, and 13 days. Fish were euthanized via cerebral
concussion and spinal severance. Water quality measures of pH
(Merck pH Universal Indicator Strips), dissolved oxygen, and
temperature (YSI Pro DO Series) were verified in the exposure
tanks on the final days of sampling. For the low (10 °C) and high
(20 °C) temperature rooms, respectively, water temperature was
(mean ± s.d.) 10.03 ± 0.32 °C and 17.07 ± 0.21 °C; dissolved
oxygenwas 14.40 ± 0.27mg/L and 12.30 ± 0.30mg/L; and there
were no changes in pH (7 ± 0, for both temperatures).

Chemical analysis

Immediately after sampling, all water and organisms sampled
were frozen at − 20 °C until further processing. Muscle tissue
(mean ± s.d. 0.09 ± 0.02 g; range 0.02–0.13 g) was dissected
from each stickleback by taking a section of the dorsal axial
muscle. Water louse collected from each temperature treatment
(10 °C and 20 °C) on each sampling day were pooled due to low
sample weight before extracting whole-body tissue (0.05 ±
0.01 g; range 0.03–0.07 g). However, when enough tissue was
available, multiple water louse samples were analysed. To each
sample, 5 ng (50 μL) of the internal standard methylphenidate-
D9 (Cerilliant, USA; in methanol, HPLC-grade, Fisher
Chemical, Loughborough, UK) was added. For both stickleback
and water louse, tissues were extracted using 1.5 ml acetonitrile
(HPLC-grade, Fisher Chemical, Loughborough, UK) repeated
twice (based on the method used by Brodin et al. 2013;
McCallum et al. 2017, 2018). The samples were homogenized
and extracted for 4 min at 42,000 oscillations per minute (Mini
Beadbeater, Biospec. Bartlesville, USA) with zirconium beads
and then centrifuged the samples at 17,500 g for 10 min
(Beckman Coulter Microfuge 22R Centrifuge). This protocol
was used for both eluent mixtures, and the supernatants were
combined. The combined supernatants were evaporated to
20 μl and the sample was reconstituted in 100 μl methanol
(HPLC-grade, Fisher Chemical, Loughborough, UK).

Fifty microlitres of methylphenidate-D9 (500 ng/L) was
added to 10-ml aliquots of the aqueous samples, filtered
(0.45 μm, Filtropur S, Sarstedt, N~umbrecht, Germany), and
acidified with 10 μL formic acid (0.1% v/v, Merck KGaA,
Darmstadt, Germany) to a pH of 2.7.

All of the samples were injected to an EQuanMAX Plus LC-
Quantiva triple quadrupole MS/MS (Thermo Scientific, San
Jose, USA). A 10-μL injection volume was used for
stickleback/louse extracts and the calibration curve. For the aque-
ous samples, and the corresponding calibration curve, a 1-mL
injection volume was used and preconcentrated the analytes on
an online-connected Oasis HLB column (2.1 × 20 mm, 15 μm

Waters, Milford, USA) using column switching (70 s transfer
time and 180 s elution time). Milli-Q ultra-pure water
(Millipore) and methanol (Lichrosolv, Hypergrade, Merck) were
used as mobile phases (both containing 0.1% formic acid
(Suprapur, Merck KGaA), v/v) together with Hypersil GOLD
columns (Thermo Scientific) as stationary phases: guard (20 ×
2.1 mm, 3 μm) and analytical (50 × 2.1 mm, 3 μm). The flow
rate was kept at 350 μL/min, and we used two linear gradients.
The gradient for the stickleback/louse extracts were as follows:
0–2 min, methanol 2%; 2–4 min, methanol 2–100%; 4–6 min,
methanol 100%; and 6.01–7.5 min, methanol 2%. For the aque-
ous samples, the gradient was 0–2 min, methanol 2%; 2–
4.75 min, methanol 2–100%; 4.75–7 min, methanol 100%; and
7.01–9 min, methanol 2%.

Positive polarity and a heated electrospray at 338 °C, an ion
transfer tube temperature at 350 °C, and a spray voltage at
3.5 kV were used. The following selected reaction-
monitoring (SRM) transitions for quantification ions (Q) and
qualitative (q) ions were used: methylphenidate 234.14→
84.11 (Q), 56.18 (q); ritalinic acid 220.14→ 84.11 (Q),
174.18 (q); and methylphenidate-D9 243.2→ 93.17 (Q),
61.17 (q). A 9-point calibration curve was used from 0.05 to
1000 ng/g or ng/L (r2 > 0.99 for both compounds). The first or
the second point within the linear range was used for the limits
of quantification (LOQ): methylphenidate 1 ng/L (aqueous)
and 0.1 ng/g (biota); and ritalinic acid 1 ng/L (aqueous) and
1 ng/g (biota). See supplementary materials for QA/QC data.

Statistical analyses

All analyses were conducted in R (version: 3.5.0; R Core Team
2018). The average concentrations ofmethylphenidate and ritalinic
acid in the water column and the uptake of both compounds in
tissues were descriptively summarized.Welch’s two-sample t tests
were used to analyse whether methylphenidate degradation in the
water column was impacted by temperature treatment. The half-
life of methylphenidate and formation rate of ritalinic acid in water
was calculated by plotting the natural log of the concentrations
measured versus time of sampling. Degradation/formation rate,
kd, is the slope given by a linear regression analysis. Half-life
was determined using the following equation:

t1=2 or t f ¼ ln 2ð Þ
kd

ð1Þ

in which t1/2 equals the half-life of methylphenidate and tf equals
the formation of ritalinic acid (d) and kd equals the depuration
rate. Relative tissue concentration for both compounds in the
stickleback and water louse tissues was calculated using the fol-
lowing equation:

Relative tissue concentration ¼ Cb

Cw
ð2Þ
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whereCb is themethylphenidate/ritalinic acid concentrationmea-
sured in biota and Cw is the methyl phenidate/ritalinic acid con-
centrationmeasured in the exposure water. Relative tissue uptake
was calculated at each sampling point.

Results

Fate of methylphenidate and ritalinic acid
in the water column

Methylphenidate quickly hydrolysed to ritalinic acid
(Fig. 1a), with ritalinic acid concentrations surpassingmeth-
ylphenidate concentrations between the 48 and 100 h in both
studies (i .e. , water without biota and with biota).
Methylphenidate degraded to ritalinic acid and faster at

20 °C than at 10 °C; likewise, ritalinic acid formed faster at
20 °C than at 10 °C (Table 1; Fig. 1b). In both studies, meth-
ylphenidate was still detectable in the water column above
the LOQ after 2 weeks (Table 1). Temperature did not affect
the concentration ofmethylphenidate immediately after dos-
ing (Fig. 1b, Table 1, Welch two-sample t test, t3.50 = − 0.69,
p = 0.54), but on the final day of sampling, the concentration
of methylphenidate was higher in 10 °C tanks than in 20 °C
tanks (Fig. 1b,Table1:Welch two-sample t test, t2.07 = 10.37,
p = 0.0081). Concentrations of ritalinic acid did not differ
between temperature treatments at the start of the experiment
(Welch two-sample t test, t2.20 = 0.54, p = 0.64) but were
higher in 20 °C tanks than in 10 °C tanks at the end of the
experiment (Welch two-sample t test, t4.00 = − 2.86, p =
0.046). SeeSupplementaryMaterials Fig. S1ab for increased
resolution of sampling across the first 24 h.

Fig. 1 Concentrations of
methylphenidate and ritalinic acid
in exposure aquaria under (a)
static conditions with no biota
(Ntanks = 1) and (b) static
conditions with biota, facetted by
temperature treatment (Ntanks = 3).
Each point represents one sample.
Solid lines represent the mean fit
by a loess curve, with shaded
ribbons showing the 95%
confidence interval of the mean
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Uptake in tissues of stickleback and water louse

Stickleback and water louse took up methylphenidate in their
tissues at different rates when exposed under the same exper-
imental conditions (Fig. 2a, b). For stickleback, tissue concen-
trations of methylphenidate were highest within the first 4 h of
exposure (Fig. 2a) and were not detectable above the LOQ on
the last day of sampling. For water louse, tissue concentrations
of methylphenidate peaked after 5 to 7 days (Fig. 2b), reached
higher tissue concentrations than stickleback, and were still
detectable at the end of the experiment (Table 2). Water louse
relative tissue concentrations (ratio between tissue and water)
were generally higher in the 20 °C than 10 °C treatment at the
end of the experiment (Table 2, end relative tissue
concentration). Neither stickleback nor water louse took up
ritalinic acid above the LOQ in their tissues at any sampling
point in the experiment (Table 2). See Supplementary
Materials Figure S2ab for figure increased resolution of sam-
pling across the first 24 h.

Discussion

Methylphenidate and ritalinic acid have garnered recent re-
search attention as surface water contaminants and a potential
concern for aquatic wildlife (Letzel et al. 2010; Endres et al.
2017). To support future ecotoxicology studies on these com-
pounds, we assessed the degradation of methylphenidate and
formation of ritalinic acid in the water column and tissue up-
take in two aquatic organisms at two temperatures. The studies
were performed well below the pKa of methylphenidate to
avoid issues on ionization that has an impact on tissue uptake
(Armitage et al. 2013) but also on adsorption processes
(Rybacka and Andersson 2016). Methylphenidate hydrolyzed
to ritalinic acid in the water column faster at 20 °C than 10 °C
(37 h versus 122 h, Table 1) because higher temperatures
increase the rate of the physicochemical processes leading to
the transformation. Additionally, the degradation of

methylphenidate to ritalinic acid was similar in exposure tanks
with or without aquatic biota. The pKa of ritalinic acid is low
(3.5; SciFinder) and the deprotonated form will thus dominate
in our experimental setting, which typically lowers the uptake
and drives the lack of uptake of this metabolite (Fu et al.
2009).

The uptake and depuration of methylphenidate in stickleback
muscle tissue closely resembled that of human and rhesus ma-
caque uptake and depuration following oral administration: a
peak in plasma within 1–4 h followed by rapid depuration
(Gualtieri et al. 1982; Doerge et al. 2000). Future ecotoxicolog-
ical studies on methylphenidate using fish should carefully plan
dosing and endpoint measurement considering compound
degradation in the water column and rapid uptake in tissues.
Studies to date, for example, Endres et al. (2017) and De
Serrano et al. (2016), exposed fish for less than an hour and then
measured physiological or behavioural endpoints. Our findings
indicate that methylphenidate concentrations stay above ~
180 ng/L (the concentration that Endres et al. (2017) found in-
creased on zebrafish cortisol) in the water column for up to
2 days. It would be valuable to understand howmethylphenidate
affects fish physiology and behaviour over a longer (48 h) time-
span. We assessed methylphenidate in muscle tissues, but it
would also be fruitful to compare uptake across different tissue
types in fish because pharmaceuticals can bioconcentrate differ-
entially among tissues (e.g., Tanoue et al. 2015). However, in
general, the low observed uptake fits well with the calculated
bioconcentration factors.

In contrast, water louse did not reach peakmethylphenidate
concentrations until 5–7 days following the initial exposure,
depending on temperature. This indicates that water louse may
have different rates or mechanisms of uptake and/or different
means of metabolizing or eliminating methylphenidate. In
humans, methylphenidate is metabolized to ritalinic acid pri-
marily by carboxylesterase CES1A1 (Markowitz and Patrick
2001). The role of carboxylesterases in fish and invertebrate
methylphenidate metabolism (and their comparative differ-
ences) was beyond the scope of this experiment but could be

Table 1 Water concentrations (ng/L) of methylphenidate and ritalinic
acid from study 1 and study 2, with the half-life or formation rate for
methylphenidate or ritalinic acid, respectively.When appropriate, data are

shown as mean ± s.d. Start sampling occurred immediately after dosing.
End sampling occurred on the final sampling day. – indicates no data, and
tanks were only dosed with methylphenidate

Nominal Measured start Measured end Half-life or formation time (h)

Study 1: static water only, Ntanks = 1

20 °C methylphenidate 1870 1660 7 37

20 °C ritalinic acid – 387 1606 79

Study 2: static + biota, Ntanks = 3

10 °C methylphenidate 187 192 ± 28 28 ± 4 122

20 °C methylphenidate 187 205 ± 19 2 ± 1 47

10 °C ritalinic acid – 11 ± 10 202 ± 12 62

20 °C ritalinic acid – 8 ± 2 231 ± 12 65
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Fig. 2 Methylphenidate
concentrations in (a) muscle
tissue from stickleback and (b)
whole-body tissue from water
louse, plotted against sampling
time. Separate trend lines denote
two temperature treatments. Error
bars represent ± 1 standard error.
Stickleback, Nsamples = 3–6 per
sampling time; water louse,
Nsamples = 1–3 per sampling time.
Sample size varies due to mass of
organisms collected

Table 2 Tissue concentrations (ng/g) and relative tissue concentrations
(eq. 2) of methylphenidate and ritalinic acid in stickleback and water
louse from study 2. Start sampling occurred 60 min after dosing. Values

are shown as mean ± s.d. (range). Ranges are not given for single values.
End sampling occurred on the final sampling day. LOQ limit of
quantification, NA not applicable

Start (ng/g) Start relative tissue concentration End (ng/g) End relative tissue
concentration

Stickleback (muscle tissue)

10 °C methylphenidate 0.18 ± 0.05 (0.13–0.28) 1.2 ± 0.5 (0.7–2.1) < LOQ NA

20 °C methylphenidate 0.12 ± 0.02 (0.10–0.14) 0.5 ± 0.1 (0.4–0.7) < LOQ NA

10 °C ritalinic acid < LOQ NA <LOQ NA

20 °C ritalinic acid < LOQ NA <LOQ NA

Water louse (whole-body)

10 °C methylphenidate 0.1 0.6 0.2 ± 0.1 (0.1–0.3) 7.5 ± 3.2 (4.0–10.4)

20 °C methylphenidate 0.2 1.1 0.1 50.0

10 °C ritalinic acid < LOQ NA <LOQ NA

20 °C ritalinic acid < LOQ NA <LOQ NA
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a focus of future studies. Aquatic invertebrates have previous-
ly been shown to bioconcentrate certain pharmaceuticals more
than vertebrates and can generally have different patterns in
uptake and depuration (Meredith-Williams et al. 2012; Fong
and Ford 2014; Heynen et al. 2016). For example, Lagesson
et al. (2016) noted that water louse bioconcentrated higher
levels of oxazepam, diphenhydramine, and hydroxyzine when
compared to European perch (Perca fluviatilis) exposed in
naturalistic pond experiment. However, these chemicals are
more hydrophobic than methylphenidate which may imply
more uptake via food and particulate matter. Future work
should investigate any behavioural and/or physiological ef-
fects following exposure to environmentally relevant concen-
tration of methylphenidate in aquatic invertebrates. Changes
in invertebrate behaviour can have important consequences
for trophic transfer of pollutants if they are more susceptible
to predation (e.g., Weis et al. 2001).

In conclusion, we have provided the first analysis of the
degradation and uptake of methylphenidate and ritalinic
acid under controlled conditions in a geographically wide-
spread aquatic vertebrate and invertebrate. Generally,
methylphenidate appears to be of greater concern for
aquatic invertebrates based on tissue uptake patterns.
Concentrations of the primary metabolite, ritalinic acid,
are relatively high in wastewater effluents (50–300 ng/L),
but the fish and invertebrates in our study did not have
detectable tissue concentrations of ritalinic acid. The above
findings (e.g. half-life, tissue uptake) will be helpful for
designing future ecotoxicological studies investigating
the biological impacts (e.g. behaviour, physiology) of
methylphenidate and ritalinic acid in aquatic systems.
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