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Abstract

The increasingly recognised effects of microbiomes on the eco-evolutionary dynamics of

their hosts are promoting a view of the “hologenome” as an integral host-symbiont evolution-

ary entity. For example, sex-ratio distorting reproductive parasites such as Wolbachia are

well-studied pivotal drivers of invertebrate reproductive processes, and more recent work is

highlighting novel effects of microbiome assemblages on host mating behaviour and devel-

opmental incompatibilities that underpin or reinforce reproductive isolation processes. How-

ever, examining the hologenome and its eco-evolutionary effects in natural populations is

challenging because microbiome composition is considerably influenced by environmental

factors. Here we illustrate these challenges in a sympatric species complex of intertidal

isopods (Jaera albifrons spp.) with pervasive sex-ratio distortion and ecological and beha-

vioural reproductive isolation mechanisms. We deep-sequence the bacterial 16S rRNA

gene among males and females collected in spring and summer from two coasts in north-

east Scotland, and examine microbiome composition with a particular focus on reproductive

parasites. Microbiomes of all species were diverse (overall 3,317 unique sequences among

3.8 million reads) and comprised mainly Proteobacteria and Bacteroidetes taxa typical of

the marine intertidal zone, in particular Vibrio spp. However, we found little evidence of the

reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium, suggesting alter-

native causes of sex-ratio distortion. Notwithstanding, a significant proportion of the vari-

ance in microbiome composition among samples was explained by sex (14.1 %), nested

within geographic (26.9 %) and seasonal (39.6 %) variance components. The functional rel-

evance of this sex signal was difficult to ascertain given the absence of reproductive para-

sites, the ephemeral nature of the species assemblages and substantial environmental

variability. These results establish the Jaera albifrons species complex as an intriguing sys-

tem for examining the effects of microbiomes on reproductive processes and speciation,

and highlight the difficulties associated with snapshot assays of microbiome composition in

dynamic and complex environments.
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Introduction

Microbiomes have long been recognised as important functional extensions of their host’s

physiological and broader ecological phenotype. For example, microbiomes affect fundamen-

tal physiological processes associated with digestion, immune system function, disease aetiol-

ogy and behaviour [1–3], ecological processes such as nutrient cycling at the plant-root/soil

interface [4, 5] and calcification, proliferation and community structure of coral reefs [6, 7], as

well as key evolutionary transitions such as the origin of mitochondria [8], gain of photosyn-

thetic function in eukaryotic cells [9] or the parallel and convergent evolution of biolumines-

cent “light organs” in squid and angler fishes [10, 11]. From an evolutionary perspective,

microbiome composition is also implicated in reproductive isolation and speciation via affect-

ing chemosensory cues essential for mating preference [12] or causing fundamental develop-

mental incompatibilities and hybrid breakdown [13]. These insights have given rise to the

“hologenome” concept of considering the host macro-organism and its associated microbiome

as an integral evolutionary entity [14–16]. As such, studying the multi-layered effects of host-

microbiome interactions holds immense value for a broad array of pure and applied disci-

plines ranging from medicine and agriculture to molecular physiology and ecosystem ecology

and evolution [14, 17, 18].

A centrally important phenomenon that underlines how microbiomes may affect eco-evo-

lutionary processes in their hosts is sex-ratio distortion in invertebrates caused by infection

with cytoplasmic reproductive endoparasites. Wolbachia, Rickettsia, Spiroplasma, Cardinium
bacteria and Microsporidian fungi infect the reproductive organs of many arthropod and

nematode species and are cytoplasmically transmitted from mother to offspring [19–23]. As a

means of promoting transmission and infection prevalence in the population, these parasites

manipulate host reproductive biology to distort host sex-ratios in favour of infected females by

induction of parthenogenesis, feminization of male offspring, killing of male embryos, disrup-

tion of sex-chromosome inheritance, or cytoplasmic incompatibility between individuals with

different infection statuses [19, 22, 24]. This demographic disruption can lead to erosion of

genetic diversity and phylogenetic signal akin to a bottleneck or selective sweep since most

of the population will eventually be descended from few infected matrilines [25, 26]. Con-

versely, Wolbachia infection can also promote diversification via horizontal gene transfer to

the host [22], and initiation or reinforcement of reproductive isolation and speciation through

cytoplasmic incompatibility between populations with mixed infections [27, 28]. Not least,

Wolbachia infection can perturb overall microbiome composition, often in sex-specific fashion

with downstream physiological effects [29–32]. In concert, these factors firmly establish Wol-
bachia and other reproductive parasites as pivotal agents in driving the evolution of many

invertebrates.

Beyond the obvious value in studying prominently important taxa such as Wolbachia and

other reproductive parasites, key to gaining a proper understanding of the effects of the holo-

genome on any facet of eco-evolutionary dynamics is the capacity to examine microbiome-

wide patterns of diversity in free-living non-model systems. The wide availability of high-

throughput DNA sequencing has enabled rapid characterisation of microbial species composi-

tion in virtually any type of field sample, and is poised to revolutionise our understanding of

how the hologenome operates and evolves in the wild [33, 34]. However, a pre-requisite to

thoroughly understanding microbiome composition is an appreciation of potential environ-

mental sources of variation. Abiotic factors in dynamic natural environments may confer

considerable spatio-temporal variation in ephemeral uptake and proliferation of commensal

microbionts that may not necessarily be functionally linked to host metabolism. For example,

microbiome composition in marine copepods is contingent on seasonal and spatial differences
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in water temperatures [35], and littoral Hymeniacidon heliophila sponges can display small-

scale variation in microbiome composition between subtidal and intertidal specimens [36].

Conversely, the microbiomes of various marine nematode species are not obviously structured

across habitats even on a global scale [37]. These examples highlight the need for an initial

assessment of the degree of environmental variation in microbiomes before attempts are made

to identify functionally relevant variation in the hologenome and its contribution to host ecol-

ogy and evolution [38].

The Jaera albifrons (sensu lato) species complex of sympatric intertidal isopods is an intui-

tively attractive study system for examining the links between reproductive parasites, micro-

biomes and host eco-evolutionary processes. In Europe, the complex comprises Jaera albifrons
sensu stricto, Jaera ischiosetosa, Jaera praehirsuta and Jaera forsmani, with Jaera nordmanni as

a congeneric outgroup taxon [39–41]. All species are common across North Atlantic coasts

and often form mixed populations in sympatry or parapatry along the intertidal zone. The

ingroup species are reproductively isolated through female preference for tactile courtship

stimuli administered by males [41, 42], genetic incompatibilities conferring rapid hybrid

breakdown [41, 42], and ecological zonation due to species-specific preferences of substrate,

drainage, salinity and exposure [41, 43, 44], though some plasticity in the degree of reproduc-

tive isolation and frequency of introgressive hybridisation has been noted [41, 45]. In spite of

these reproductive isolation mechanisms, all species are polyphyletic according to the mito-

chondrial 16S rRNA gene and also usually display substantial sex-ratio bias towards females

[46–48]. This would be consistent with the presence of sex-ratio distorting reproductive para-

sites and associated erosion of mitochondrial diversity [42]. Attempts of detecting Wolbachia
in Jaera via PCR have not yielded conclusive evidence for ongoing infection [48, 49]. However,

a proper characterisation of the Jaera microbiome via next-generation sequencing has not yet

been attempted, thus reproductive parasites other than Wolbachia may be present and affect

Jaera demography and evolution. Moreover, such a characterisation would be an invaluable

resource for exploring whether the Jaera microbiome could be involved in driving speciation

and reproductive isolation mechanisms in the species complex, potentially through reinforce-

ment of ecological niche partitioning via metabolic co-adaptation, affecting chemosensory or

behavioural mate choice, or developmental hybrid incompatibility [12, 13, 50].

Here we use next-generation amplicon sequencing to provide a first characterisation of

the microbiomes of males and females across the Jaera albifrons species complex. We deep-

sequence the V3/V4 region of the bacterial 16S rRNA gene from DNA pools of Jaera individu-

als, examine specifically whether the reproductive parasites Wolbachia, Rickettsia, Spiroplasma
and Cardinium are present, and explore broader signatures of seasonal, spatial and sex-specific

variation in microbiome composition from samples collected in spring and summer from two

coasts in north-east Scotland. This initial description of the Jaera microbiome will develop

hypotheses for factors affecting microbiome composition in Jaera and establish the Jaera albi-
frons species complex as a powerful system for investigating the role of the microbiome in

reproductive processes and speciation.

Materials and methods

Sample collection and processing

Jaera spp. are common intertidal invertebrates that are neither protected nor require sampling

permits. Live individuals were collected in spring and summer 2017 from two coasts in north-

east Scotland, separated by c. 200 km of coast line. Gardenstown on the north coast (57.672

˚N, –2.337 ˚E) harbours all four European species of the species complex alongside the out-

group Jaera nordmanni in varying composition along the shoreline. Two beaches on the
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south-east coast in close vicinity to each other (Johnshaven: 56.796 ˚N, –2.328 ˚E; Arbroath:

56.518 ˚N, –2.659 ˚E) harbour >95 % pure single-species populations of Jaera albifrons and

Jaera ischiosetosa respectively.

As soon as possible after collection, individuals were sexed and assigned to species by

identifying patterns of pereiopod setation in males using light microscopy [40, 41]. Identified

males were then kept at room temperature in a large tub containing filtered sea water from

the collection site. Since females cannot be assigned to species morphologically [40, 41], we

assigned putative species based on species composition of males collected at the same beach

section. An approximately even species mix of females was added to the same tub as the males,

and all individuals were starved for one week to reduce gut content. Individuals were then

briefly rinsed in sterile water and immediately processed for DNA extraction.

We generated eleven DNA samples that comprised one pure male pool (6-12 individuals)

for each of all five species, five mixed or presumably pure female pools (6-12 individuals),

and a single exceptionally large female of unknown species (Table 1). These samples not

only allowed us to screen males and females of all species for sex-ratio distorting parasites, but

also to capture a broad snapshot of the Jaera microbiome across coasts and seasons. Samples

were homogenized in heated (60 ˚C) lysis buffer (0.1 M Tris-HCl, 0.05 M EDTA, 0.1 M NaCl,

1 % SDS, 400 μg Proteinase K, 100 μg RNAse A) using an autoclaved teflon plunger. The

homogenate was incubated overnight at 60 ˚C and DNA was extracted via standard phenol-

chloroform extraction. DNA quality and quantity were checked with a NanoDrop ND-1000

spectrophotometer. Samples were submitted to Eurofins Genomics (Ebersberg, Germany)

for bacterial 16S rRNA V3/V4 amplicon generation (c. 420 bp) using the standard S-D-Bact-

0341-b-S-17 and S-D-Bact-0785-a-A-21 primers [51] with sample-specific barcodes, and

sequencing on the Illumina MiSeq V3 platform in 300 bp paired-end mode.

Sequence assembly, curation and taxonomic classification

Raw sequence reads were filtered, de-noised and assembled to unique single-end (forward

reads only) as well as paired-end sequence variants using DADA2 v1.4.0 [52] in R v3.4.0 [53].

Reads were trimmed at nucleotide call quality below 2, and reads with undetermined bases

were discarded. Exploratory quality plots indicated a rapid decline in basecall quality towards

the ends of the reads, particularly for reverse reads. Therefore, for paired-end analysis, forward

reads were further trimmed to 260 bp and reverse reads to 220 bp, ensuring an overlap of at

least 60 bp. Error rates were estimated and sequences were de-noised separately for forward

and reverse reads in pooled-sample mode. Single-end and paired-end contigs were assembled

from de-noised data and chimera sequences were removed.

Taxonomic classification to genus level was assigned from the SILVA NR v128 database [54]

using the RDP classifier algorithm [55] with k-mer size 8, 100 bootstrap replicates and a mini-

mum bootstrap support of 50. Species-level classification was added where possible based on

100 % sequence identity with SILVA NR v128 [56]. Sequences that were assigned to chloroplast,

mitochondria, archaea, or eukaryota taxa were removed. Each sample was further annotated

with putative functional metabolic capabilities of the identified microbial community using

TAX4FUN v0.3.1 and associated pre-computed SILVA NR v123 reference data [57]. The observed

sequence counts were transformed into abundances of KEGG enzymes via association with

KEGG reference organisms. These enzymes were further classified with the first three levels in

KEGG functional hierarchies [58].

The taxonomically classified microbiomes were then screened for reproductive parasite

species in the Wolbachia, Rickettsia, Spiroplasma and Cardinium genera or relevant higher

taxonomic levels. Candidate sequences were aligned with all available Wolbachia, Rickettsia,
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Spiroplasma and Cardinium reference sequences in SILVA NR v128 using MAFFT V7.305 [59] and

clustered using neighbour-joining on Kimura-2-parameter phylogenetic distances in APE v4.1

[60]. Sequences that clustered closely with the SILVA reference sequences were more closely

examined using NCBI MEGABLAST [61] against the non-redundant nucleotide collection (NT).

Microbiome sequence diversity and composition

Sequence diversity analyses were carried out on single-end as well as paired-end datasets,

using R and the package PHYLOSEQ v1.19.1 [62]. Sequencing depths per sample were examined

for circumstantial associations with the categorical sample variables season (spring and sum-

mer), region (north: Gardenstown; south: Johnshaven/Arbroath) and sex using negative

binomial generalized linear models (GLM) in the MASS package [63]. Rarefaction curves were

obtained by computing the number of unique sequence variants in subsamples of increasing

sizes in steps of 1,000 sequences without replacement [64]. Diversity indices (Chao1, ACE,

Shannon, Simpson, inverse Simpson and Fisher) were computed for each sample and com-

pared between samples grouped by season, region or sex using two-tailed Welch’s t-test.

Consistency of all metrics between single-end and paired-end datasets was examined using

Pearson’s correlation test.

Table 1. Summary of sequencing effort and sequence diversity across eleven samples.

ID Species Season Region Sex Single-end

reads

Paired-end

reads

Variants Chao1 ACE Shannon Simpson InvSimpson Fisher

S1 Jaera
forsmani

Spring North M 355,151 323,324 1,919 2,011 ± 19.433 1,993 ± 21.732 4.938 0.973 37.572 266.718

S2 Jaera
albifrons

Spring North M 285,237 254,668 1,998 2,096 ± 19.66 2,078 ± 22.451 4.719 0.955 22.429 289.874

S3 Mix Spring North F 239,064 218,576 1,409 1,579 ± 40.387 1,544 ± 16.246 5.404 0.984 64.391 198.618

S4 Mix Spring South F 298,546 279,462 1,019 1,342 ± 75.903 1,195 ± 16.267 3.660 0.860 7.127 131.909

S5 Jaera
nordmanni

Summer North M 123,413 75,377 1,344 1,494 ± 29.587 1,469 ± 18.691 5.346 0.985 67.930 210.864

S6 Jaera
ischiosetosa

Summer North M 146,701 95,980 1,344 1,525 ± 35.511 1,474 ± 18.62 4.703 0.946 18.509 204.322

S7 Jaera
praehirsuta

Summer North M 64,878 29,535 1,506 1,603 ± 20.221 1,589 ± 19.683 5.661 0.987 77.825 275.532

S8 Mix Summer North F 537,362 340,550 1,596 1,659 ± 16.183 1,643 ± 19.196 4.716 0.973 36.655 202.424

S9 Unknown Summer North F 776,641 517,273 1,584 1,628 ± 13.248 1,616 ± 18.159 4.389 0.956 22.781 190.543

S10 Jaera
ischiosetosa

Summer South F 480,152 325,520 1,030 1,333 ± 46.439 1,372 ± 19.789 3.957 0.934 15.263 124.762

S11 Jaera
albifrons

Summer South F 559,443 376,747 1,201 1,374 ± 32.229 1,345 ± 18.143 2.896 0.835 6.054 145.490

Total 3,866,588 2,837,012 3,317 – – – – – –

Correlation single/paired end (Pearson’s r) – – 0.952 0.938 0.902 0.992 0.999 0.976 0.964

Association with season (P-value) 0.497 0.874 0.240 0.273 0.406 0.766 0.956 0.898 0.515

Association with region (P-value) 0.410 0.438 0.001 0.003 0.005 0.024 0.084 0.004 0.000

Association with sex (P-value) 0.002 0.021 0.045 0.118 0.120 0.057 0.137 0.232 0.006

Sample descriptors (species, season, region and sex) are given alongside numbers of de-noised single-end and paired-end reads, and the following diversity indices based

on single-end reads: numbers of unique sequence variants, Chao1 ± SE, ACE ± SE, Shannon, Simpson, inverse Simpson and Fisher index. Below, Pearson’s correlation

coefficient (r; all P� 0.001) between single-end and paired-end datasets, and associations of metrics with sample descriptors (two-tailed Welch’s t-test P-value) are

presented. Significant P-values (P� 0.05) are emboldened.

https://doi.org/10.1371/journal.pone.0202212.t001
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Rarefied versions of the datasets were obtained by subsampling to the lowest sequencing

depth across samples. Microbiome structure between samples was explored with Jaccard

and Bray-Curtis dissimilarity indices and visualised in two-dimensional space using metric

(Jaccard) or non-metric (Bray-Curtis) multidimensional scaling (MDS). Samples were then

clustered hierarchically using Ward’s criterion on the dissimilarity matrix, and clusters were

visualised as dendrograms using GGTREE v1.6.10 [65]. Sources of variation attributed to season,

region and sex were explored with distance-based redundancy analysis and permutational

multivariate analysis of variance (PERMANOVA) with 9,999 permutations [66]. Finally, to

further explore sex-specific differences in microbiome composition, we fitted negative bino-

mial GLMs in a differential gene expression framework that accounts for differences in library

size and dispersion, as implemented in DESEQ2 [67]. Fold changes were calculated between

sexes accounting for season and region as covariates. P-values were corrected for multiple test-

ing using the false-discovery rate method [68], and sequences with significant fold changes

(FDR� 0.1) were identified.

Results

Taxonomic composition and diversity

De-noised single-end sequence data comprised 64,878–776,641 reads that collapsed to 1,019–

1,998 unique sequence variants per sample. Across all eleven samples, 3,317 unique sequence

variants were observed, which were assigned to 25 phyla, 45 classes, 94 orders, 185 families

and 445 genera, based on the SILVA NR v128 database. However, considerable fractions of these

sequence variants could not be assigned beyond particular taxon levels at the 50 % bootstrap

cut-off, i.e., 0.78 % for phylum, 3.33 % for class, 8.06 % for order, 16.21 % for family, 42.15 %

for genus and 94.16 % for species levels. Paired-end data recovered less diversity, comprising

29,535–517,273 reads and 329–1,800 unique sequence variants, and captured less diversity

with 3,283 unique sequence variants assigned to 23 phyla, 40 classes, 89 orders, 182 families

and 426 genera. However, taxonomy assignment was slightly better compared to single-end

data, with non-classification rates of 0.45 % for phylum, 1.58 % for class, 4.28 % for order,

10.70 % for family, 35.93 % for genus and 93.97 % for species. Rarefaction curves approached

asymptotic stages for most samples, suggesting that the sequencing effort captured the major-

ity of sequence diversity in both types of datasets (S1 Fig).

The Proteobacteria and Bacteroidetes were the dominant phyla in all samples, accounting

for 69.7–94.0 % and 5.7–28.2 % of sequences per sample, and the six most abundant phyla

accounted for 99.5–99.9 % (Fig 1). The six most abundant orders accounted for 62.4–92.7 %

and the six most abundant genera for 23.3–58.6 % of sequences, of which Vibrio dominated

most samples with up to 46.1 %. Notwithstanding, microbial sequence diversity was high in all

samples, with a Simpson index of 0.835–0.987 and Fisher index of 125–290 (Table 1; S2 Fig).

All metrics were highly correlated between single-end and paired-end datasets (r = 0.902

− 0.999;p� 0.001; Table 1). Diversity was similar among seasons, but signatures of region

and, in particular, sex were apparent in many diversity metrics (S2 Fig). Rigorous statistical

analysis beyond basic Welch’s t-tests was precluded by low sample size, but these tests sup-

ported a difference between sexes in particular (Table 1; S2 Fig), consistent with shallower rar-

efaction curves in females (S1 Fig).

Prediction of broad-brush metabolic capacity of the identified microbial communities via

sequence similarity of taxonomically classified sequences to KEGG model taxa recovered 278

KEGG pathways. The proportion of sequences that could not be mapped to KEGG organisms

(FTU) ranged from 55.0 % to 96.8 % (median 89.2 %) per sample. The most abundant top-

level category was 09100 Metabolism (median 57.3 % across samples), followed by 09130

Microbiome composition in Jaera albifrons spp.
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Environmental Information Processing (23.9 %). The most abundant pathways included 09131

Membrane transport, 09102 Energy metabolism and 09101 carbohydrate metabolism (S3 Fig).

Sex-ratio distorting reproductive parasites

No sequences were directly assigned to known SILVA strains of the reproductive parasite genera

Wolbachia, Rickettsia, Spiroplasma and Cardinium. However, some sequences were assigned

to relevant higher taxonomic ranks: one sequence to the family Anaplasmatacea, 16 sequences

to Rickettsiacea, 36 sequences to Flammeovirgaceae and one sequence to the order Entomo-

plasmatales. The counts of these sequences ranged from 0 to 5,583, representing relative abun-

dances of at best 1.16 % (Fig 2; S1 Table). Of these 54 sequences, three clustered reasonably

closely with the Rickettsia, Spiroplasma and Cardinium clades, but no sequence clustered

closely with Wolbachia (Fig 2).MEGABLAST broadly supported these classifications, matching an

uncultured Rickettsiaceae bacterium (accession JQ701668.1) at 90 % identity to the Rickettsia
sequence, and an uncultured bacterium from the Cytophaga-Flavobacterium-Bacteroides

group (DQ812543.1) at 98 % identity to the Cardinium sequence. However, the presumed Spir-
oplasma sequence matched with 94 % identity an uncultured bacterium from the Mycoplasma-

taceae family (EU646196.1), which is situated in a different order than Spiroplasma.

Sources of variation in microbiome composition

We further explored microbiome composition for sex-specific, seasonal and regional signa-

tures. Since sequencing depth was different between male and female samples (negative

Fig 1. Relative sequence abundances of the six most abundant phyla, orders and genera across eleven samples (S1-S11), organised by season and sex.

https://doi.org/10.1371/journal.pone.0202212.g001
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binomial GLM: z = 3.115;P = 0.002), the datasets were rarefied (64,878 sequences for single-

end data and 29,535 sequences for paired-end data) to avoid spurious sex-specific signatures

in microbiome composition.

Ordination and hierarchical clustering of Jaccard dissimilarity among samples suggested

two major clusters that correspond to samples collected in spring and summer. Within both

seasons, samples are further clustered by geographic region, and the northern region is further

subdivided by sex (Fig 3). Distance-based redundancy analysis ascribed 39.6 % of the total var-

iance to season, 26.9 % to region and 14.1 % to sex, and all three hierarchical variance compo-

nents were statistically significant (Table 2). Bray-Curtis dissimilarity broadly supported these

patterns (Table 2), but hierarchical clustering did not consistently recover the same nested

structure (S4 Fig).

Since all samples from the southern regions were females, it cannot be ruled out that vari-

ance ascribed to region is in fact sex-specific variation. However, this is quite unlikely since

variance among males and females in the northern region in summer was considerably smaller

than the putative variance among regions in summer (Fig 3). Similarly, although not all species

are represented within each cluster, it appears that structure among sexes outweighs structure

associated with species or microgeography at the same beach. Jaera nordmanni and Jaera
ischiosetosa males collected from the same set of rocks in Gardenstown (north) in summer

Fig 2. Neighbour-joining dendrogram (K2P phylogenetic distance) of SILVA NR v128 16S rRNA gene reference sequences for reproductive

parasites Wolbachia , Rickettsia, Spiroplasma and Cardinium genera (dashed branches) and most closely related Jaera 16S rRNA gene sequences

(families Rickettsiaceae and Flammeovirgaceae, and order Entomoplasmatales; solid branches). The relative sequence abundances of the Jaera
sequences are summarised alongside. Tip labels correspond to sequence identifiers in S1 Table.

https://doi.org/10.1371/journal.pone.0202212.g002
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clustered most closely, followed by Jaera praehirsuta males collected further down the shore at

the same time. However, the single large female (unknown species) collected at the same beach

and time did not cluster as closely with any of these three male single-species samples. Instead,

she clustered most closely with a mix of females collected from the same rocks as the three

male samples (Fig 3).

Exploring the identified sex-specific signal in microbiome composition further with nega-

tive binomial models indicated that eleven sequences were significantly (FDR� 0.1) more

abundant in males and six sequences were more abundant in females, after accounting for dif-

ferences in season and region (Fig 4). Of these 17 sequences ten had taxonomic annotation,

representing ten genera in nine families: Aureispira, Peredibacter, Loktanella, Winogradskyella
and Pibocella genera were more abundant in males, and Tenacibaculum, Marinomonas, Aliiro-
seovarius, Leisingera and Pelagibius genera were more abundant in females (Fig 4). A simpli-

fied analysis within the northern region only recovered similar patterns, corroborating

Fig 3. Hierarchical clustering (left) and metric multidimensional scaling (right) of Jaccard dissimilarity among samples. Sample categories (season, region and sex)

are indicated by line type, symbol shape and colour, respectively.

https://doi.org/10.1371/journal.pone.0202212.g003

Table 2. Permutational multivariate analysis of variance (PERMANOVA) in Jaccard and Bray-Curtis dissimilarity indices among samples.

DF SS MS F R2 P
Jaccard dissimilarity

Season 1 0.931 0.931 10.141 0.396 0.000

Region 2 0.633 0.316 3.445 0.269 0.002

Sex 2 0.331 0.166 1.803 0.141 0.049

Residuals 5 0.459 0.092 0.195 – –

Total 10 2.354 1.000 – – –

Bray-Curtis dissimilarity
Season 1 0.704 0.704 4.388 0.245 0.000

Region 2 0.772 0.386 2.407 0.268 0.001

Sex 2 0.599 0.299 1.866 0.208 0.018

Residuals 5 0.802 0.160 0.279 – –

Total 10 2.876 1.000 – – –

Total variance was decomposed into hierarchical levels corresponding to season, region and sex, and statistical significance was estimated from 9,999 permutations. The

table presents degrees of freedom (DF), sums of squares (SS), mean squares (MS), F-statistic, R-squared and P-value. Significant P-values (P� 0.05) are emboldened.

https://doi.org/10.1371/journal.pone.0202212.t002
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Pibocella as male-associated and suggesting Vibrio and Owenweeksia as additional female-asso-

ciated taxa (S5 Fig). Likewise, using non-rarefied data and a stricter significance threshold, a

similar set of differentially abundant taxa was identified, highlighting Aliivibrio, Flavirhabdus
and Polaribacter as further female-associated taxa (S6 Fig).

Discussion

We present an initial survey of microbiome composition among males and females of all UK

members of the Jaera albifrons species complex of intertidal isopods. The salient features of

all microbiomes are high species diversity and absence of the classic feminizing reproductive

parasite Wolbachia, though potentially novel strains of Rickettsia and Cardinium may be pres-

ent instead. Additionally, microbiome composition varied considerably among samples and

revealed hierarchical structure associated with season, region and sex. These patterns provide

a first look at environmental sources of variation in microbial assemblages and could indicate

an involvement of the microbiome in reproductive processes in Jaera.

Characterisation of Jaera microbiomes

The microbial communities of all samples were dominated by the Proteobacteria and Bacteroi-

detes phyla, which are widely described as the most abundant phyla in intertidal and open oce-

anic environments [36, 69–72]. The high abundance of Vibrio in particular is consistent with

microbiomes of other marine invertebrates such as copepods [35] or sea urchins [73]. Vibrio
is a very common endo- and epibiont in marine crustaceans and often produces chitinolytic

enzymes that allow for exploiting chitinous exoskeleton as a niche for attachment and prolifer-

ation [71, 74, 75]. Some Vibrio species are pathogens and others have been implicated in bio-

geochemical processes, but the specific metabolic relationships between crustaceans and Vibrio
are cryptic [74].

Beyond these dominant taxa, sequence diversity in Jaera was high, consistent with diversity

in intertidal sponges [36] and other marine invertebrates [35], and exceeded diversity of the

terrestrial isopod Armadillidium vulgare [31]. A large proportion of sequences could not be

taxonomically characterised to species level, and functional classification was hampered by

very low mapping rate of sequences to KEGG organisms. Rarefaction curves suggested that

more sequencing effort would have detected even more diversity in most samples, particularly

Fig 4. Sequence variants with differential abundance between sexes. The left panel summarises fold change and statistical significance for each sequence variant. The

following two panels illustrate total aggregated sequence counts (abundance) and taxonomic classification (family or genus) of statistically significant (FDR� 0.1)

sequence variants.

https://doi.org/10.1371/journal.pone.0202212.g004
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in males. This would suggest a wealth of uncharacterised taxonomic diversity, consistent with

other studies investigating marine microbiomes [69, 76], and highlights the need for better ref-

erence characterisation of marine microbial communities [34].

In spite of capturing high microbial diversity, there was no evidence of known SILVA-curated

strains of the reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium.

Although some sequences were classified to relevant higher taxonomic ranks and clustered rel-

atively closely with known SILVA strains, only one sequence (presumed Rickettsia) formed a

monophyletic group with known strains. Even if some of the identified sequences represented

novel, somewhat diverged, strains of these reproductive parasites, all sequences in question

had very low abundances and would not suggest high infection intensities. These results are

difficult to reconcile with prevalent sex-ratio distortion in Jaera [46–48] and pervasive Wolba-
chia infection in many crustaceans [49, 77]. However, these results are fully compatible with

previous studies that have failed to reliably detect Wolbachia infection in total Jaera DNA

extracts using targeted PCR assays [48, 49]. Ribardière et al. [48] screened 817 individuals

across the Jaera albifrons species complex using 11 PCR protocols, but found little evidence of

infection beyond an ephemeral novel haplotype in some Jaera albifrons and Jaera praehirsuta
individuals, identified using a nested PCR protocol. As such, infection of Jaera species by Wol-
bachia or other bacterial sex-ratio distorting parasites cannot be ruled out, but infection inten-

sities and prevalence appear to be very low and difficult to detect.

The biological relevance of rare sequences is difficult to assess and may well be an artefact

of working with whole-body DNA extracts. Reproductive parasites primarily infect the repro-

ductive and digestive tracts, thus it may be possible that dissection of these tissues prior to

DNA extraction and sequencing improves detection [31, 78, 79]. Nevertheless, whole-body

extracts should not in principle preclude detection of Wolbachia infection [29, 80], and even

low infection levels should be readily detectable [81]. We thus conclude that prokaryotic repro-

ductive parasites are unlikely to explain pervasive sex-ratio biases among the Jaera albifrons
species complex, but note that the role of eukaryotic sex-ratio distorters (such as Microspori-

dian fungi [23]) remains uninvestigated in Jaera.

Sources of variation in microbiome composition

Microbiome composition in Jaera varied considerably between spring and summer despite

similar species richness, suggesting that the microbiome in Jaera undergoes extensive temporal

changes in species composition, yet remains fairly consistent in complexity. Seasonal changes

in marine microbiomes are well-documented and are primarily driven by abiotic environmen-

tal factors such as temperature and biogeochemical processes [69, 82, 83]. In copepods, such

seasonal changes have been reported even across a few weeks in early summer and may be

linked to a rise in water temperatures and concomitant changes in temperature-sensitive

marine microbial communities [35]. Any vacated ecological niches would then be taken up by

different microbe species such that the overall species richness would not be greatly affected.

For example, Vibrio form the core microbiome of copepods in subtropical locations, but Vibrio
abundance is lower in temperate regions where a similar chitinolytic niche could be taken up

by Pseudoalteromonas species [35].

The Jaera microbiome also showed regional structure in species richness and species com-

position across the two sampling regions in north-east Scotland. Although we sampled only

females from the two southern coasts and therefore cannot rule out that at least part of the

regional variance is attributable to species rather than geography, spatial effects on littoral and

intertidal microbiome composition are, in fact, commonly reported at large and small scales.

This is illustrated by vastly different microbiomes in Hymeniacidon heliophila sponges in
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subtidal and intertidal habitats at the same site [36], as well as spatial structure in microbiomes

in populations of sand hoppers across the Tuscan coast [70] and benthic amphipods in the

Great Lakes [84]. The regional structure in the Jaera microbiome could be due to differences

in abiotic factors such as aspect (north-facing versus east-facing beaches), geology (cliff coast

vs. plain coast) and human activity (proximity to harbours or sewage outlets). One particular

factor could be differences in salinity, either intrinsic to the substrate or extrinsic from nearby-

freshwater streams. Both beaches in the south were affected by freshwater drainage from

streams, whereas the beach in the north had no freshwater influx. The observed lower micro-

bial diversity in the freshwater-affected sites contradicts the pattern found in a freshwater-

marine transect in Greece [76], but is consistent with an increase in species richness and con-

siderable changes in composition of the skin microbiome of Atlantic salmon after transition-

ing from freshwater to seawater [85].

Finally, overall microbiome composition showed a signature of sex, nested within the larger

environmental variance components. Males tended to have more diverse microbiomes than

females and the sexes also differed in the presence and abundance of a range of taxa, including

a range of putative pathogens such as Aliivibrio, Aliiroseovarius, Vibrio and Tenacibaculum
[86–88], and common environmental species typical of marine arthropods with no immediate

functional link to reproductive processes, such as Loktanella, Glaciecola, Aureispira, Wino-
gradskyella, Pelagibius and Marinomonas [75, 89]. An interesting finding was the high abun-

dance of Leisingera in females in summer, alongside Vibrio and Tenacibaculum. Secondary

metabolites produced by Leisingera are known to have antimicrobial effects and are used by

cephalopods to protect their eggs against pathogens such as Vibrio [90]. Nevertheless, the spe-

cific functional roles of the taxa assemblage in male and female Jaera remains obscure and will

require more detailed functional assays and experimentation.

Sex-specific differences in diversity and composition have been reported, for example, in

whole-body microbiomes of phloem-feeding whiteflies, aphids and psyllids [29], and cloacal

microbiomes of the striped plateau lizard Sceloporus virgatus [91]. In arthropods, these differ-

ences are often attributed to infection with reproductive endoparasites [29, 32]. For example,

uninfected males and females of the terrestrial isopod Armadillidium vulgare have similar

microbiomes, but Wolbachia-infected females carry higher total bacterial loads [30, 31]. Since

we found little evidence of reproductive parasites in Jaera, alternative explanations need to be

considered. One hypothesis could be that sex-specific microbiomes are functionally linked to

intra-specific reproductive processes such as sex recognition or sexual selection that may have

knock-on effects on reproductive isolation and speciation [12, 13, 92]. For example, reproduc-

tive isolation via pheromones is documented in allopatric populations of the marine poly-

chaete Neanthes acuminata [93] and sympatric populations of the amphipod Eogammarus
confervicolus [50]. The idea that microbiomes may be linked to host developmental processes

and co-diverge tightly with host speciation events—a phenomenon termed “phylosymbio-

sis”—is a hotly debated topic [14–16, 38]. Although we were unable to separate species-specific

signals from sex-specific signals with the present set of samples, the Jaera albifrons species

complex would be an excellent study system for testing these ideas with more extensive sam-

pling across both sexes within all species.

Conversely, instead of enhancing metabolic function or causing behavioural changes in the

host, sex-specific patterns in microbiont abundance could simply be attributed to differences

in host body size or behaviour that circumstantially cause differential uptake and proliferation

of episymbiont communities. Male Jaera are usually smaller than females despite evidence of

sexual selection for body size and size-assortative mating [40, 94], suggesting that the effect of

body size on microbiome composition would be worth investigating further [95]. Male Jaera
could also potentially occupy different microhabitats than females as a consequence of sexual
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dimorphism [96]. Although all samples were collected from underneath rocks, which always

harbour mixed sex populations [46, 47], sex-specific differences in substrate microhabitat

occupation cannot be ruled out but are yet to be investigated. Similarly, behavioural differ-

ences could also affect both epi- and endosymbiont communities, for example through differ-

ences in feeding rates or food preferences among sexes, which is well supported in copepods

[97]. Gravid females in particular would be expected to change feeding habits or even cease

feeding altogether, as is the case in the amphipod Ligia [98]. All sampled Jaera females were

not gravid, but sexual receptivity or other ongoing reproductive processes may well have

caused sex differences among microbiomes, particularly during the reproductive peak in sum-

mer where these differences were most pronounced [46].

Outlook and conclusions

In summary, the Jaera microbiome is highly diverse and appears to be subject to multiple spa-

tio-temporal environmental sources of variation, which is typical of marine intertidal micro-

biomes. A surprising result was the weak evidence of sex-ratio distorting reproductive parasites,

which suggested very low infection levels at best in spite of pervasive sex-ratio distortion. How-

ever, the finding of sex-specific patterns in overall microbiome composition warrants closer

scrutiny and establishes the Jaera albifrons species complex as an intriguing study system for

the effects of microbiomes on host reproductive processes.

Our study has provided a snapshot assay that highlights the vast amount of variation

in microbiomes from highly dynamic and complex environments. No doubt much of the

ephemeral variation that has been characterised is attributed to ephemeral epibionts that

may not necessarily be linked to host metabolism. Variation in this fraction could be reduced

by maintaining Jaera long-term under controlled common-garden conditions [38]. Simi-

larly, dissecting digestive or reproductive tracts could be a worthwhile avenue for targeting

more specialised symbionts, since these tissues are often dominated by few taxa in tight asso-

ciation with host metabolism [73, 99–101]. Notwithstanding, our study highlights that, in

order to properly understand the causes and consequences of phylosymbiosis or other effects

of the hologenome it is essential to characterise microbiomes in situ with an appropriate

sampling design that allows for appreciation of all sources of extrinsic and intrinsic variation.

As such, more descriptive studies are essential for generating hypotheses of how the hologen-

ome may operate in complex environments beyond classic model systems or controlled labo-

ratory environments [34].
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