
1 

 

Distribution of sex ratio distorters in natural populations of the isopod 1 

Armadillidium vulgare 2 

 3 

 4 

Sylvine Durand1, Baptiste Lheraud1, Isabelle Giraud1, Nicolas Bech1, Frédéric Grandjean1, Thierry 5 

Rigaud2, Jean Peccoud1 and Richard Cordaux1 6 

 7 

 8 

1 Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de 9 

Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France 10 

2 Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, 6 boulevard 11 

Gabriel, 21000 Dijon, France 12 

 13 

 14 

* Corresponding author: richard.cordaux@univ-poitiers.fr 15 

  16 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510044
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 17 

 18 

In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, 19 

due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We 20 

investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation 21 

in 16 populations from Europe and Japan. Confirming and extending results from the 1990’s, we 22 

found that the SRD are present at variable frequencies in populations, and that the f element is 23 

overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any 24 

population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element 25 

in some males, which likely reflects insufficient titer to induce feminization or presence of 26 

masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia 27 

genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier 28 

hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and 29 

mitochondrial haplotypes, but no association between the f element and mitochondrial background. 30 

Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of 31 

genetic conflicts and their impact on the variability of sex determination systems. 32 
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1. Introduction 37 

 38 

Sex ratio distorters (SRD) are selfish genetic elements located on sex chromosomes or transmitted by 39 

a single sex, which skew the proportion of males and females in progenies towards the sex that 40 

enhances their own vertical transmission [1]. Major SRD types include sex chromosome meiotic 41 

drivers [2,3], B chromosomes [4], selfish mitochondria [5] and intracellular endosymbionts [6,7]. 42 

Collectively, they are found in a wide range of animal and plant species and they have had a 43 

tremendous impact on the ecology and evolution of their host species [8,9]. One of the most 44 

emblematic SRD is the bacterial endosymbiont Wolbachia [10,11]. Wolbachia is a cytoplasmic, 45 

maternally inherited alpha-proteobacterium found in a wide range of arthropods and nematodes. In 46 

arthropods, Wolbachia often manipulates host reproduction in favor of infected females, thereby 47 

conferring itself a transmission advantage. This is achieved through various strategies, three of which 48 

causing sex ratio distortions towards females: male killing, thelytokous parthenogenesis and 49 

feminization of genetic males [6,7,10,11]. 50 

In the terrestrial isopod Armadillidium vulgare, chromosomal sex determination follows female 51 

heterogamety (ZZ males and ZW females) [12–14]. However, many females produce progenies with 52 

female-biased sex ratios, due to the presence of two feminizing SRD: Wolbachia endosymbionts and 53 

a locus called the f element [6,15,16]. Wolbachia symbionts cause ZZ genetic males to develop as 54 

phenotypic females [17]. Three Wolbachia strains have been described in A. vulgare, for which 55 

feminization induction has been demonstrated (wVulC and wVulM strains [18,19]) or is strongly 56 

suspected (wVulP strain [20]). The f element is a nuclear insert of a large portion of a feminizing 57 

Wolbachia genome in the A. vulgare genome [21]. The f element induces female development, as a 58 

W chromosome does, and it shows non-Mendelian inheritance, making it an SRD [21,22]. These SRD 59 

may cause turnovers in sex determination mechanisms [6,15,23] and they could explain why sex 60 

chromosome systems are so variable in terrestrial isopods [24–27]. 61 

Testing this hypothesis requires characterizing the evolutionary dynamics of SRD such as Wolbachia 62 

and the f element in natural populations. In A. vulgare, this characterization is quite limited because 63 

prior studies were mostly restricted to a narrow geographic area (western France), sometimes 64 

focusing solely on Wolbachia [20,28–31]. The only exception is a 1993 study [32], which collated and 65 

extended results from the early 1980’s [33,34]. The main observations were that Wolbachia and the f 66 

element are present at variable frequencies in field populations, and the f element is more frequent 67 

than Wolbachia. However, earlier studies were limited by the lack of molecular tests for Wolbachia 68 

and/or the f element, preventing any direct assessment of SRD presence. Instead, the authors used a 69 
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complex, indirect procedure combining a physiological test and crossings [32]. In addition to being 70 

tedious and time-consuming (generation time is one year in this species), this procedure did not 71 

allow direct and undisputable assessment of SRD presence. Moreover, it could only be run on 72 

females and therefore provided no information on SRD presence in males. Finally, it could not reveal 73 

individuals potentially carrying both SRD. 74 

Here, we took advantage of the availability of molecular markers to directly assess SRD presence in 75 

males and females from A. vulgare field populations from Europe and Japan. This approach allowed 76 

us to circumvent the limitations of previous studies, and to revisit the population dynamics of 77 

Wolbachia and the f element in this species and their association mitochondrial lineages. 78 

 79 

2. Materials and Methods 80 

 81 

647 A. vulgare individuals from 16 natural populations across Europe and Japan were collected by 82 

hand. Individuals were sexed and stored in alcohol or at -20°C prior to DNA extraction. Total genomic 83 

DNA was extracted from the head and legs of each individual, as described previously [21]. We used 84 

four molecular markers to assess the presence of Wolbachia and the f element in DNA extracts: Jtel 85 

[21], wsp [35], recR [36] and ftsZ [37]. While Jtel is specific to the f element, wsp and recR are specific 86 

to Wolbachia, and ftsZ is present in both the f element and Wolbachia [21]. We assessed the 87 

presence or absence of these markers by PCR, as described previously [21]. Different amplification 88 

patterns were expected for individuals with Wolbachia only (Jtel-, wsp+, either recR+ or ftsZ+), the f 89 

element only (Jtel+, wsp-, recR-), both Wolbachia and the f element present (Jtel+, wsp+, recR+) or 90 

both Wolbachia and the f element lacking (Jtel-, wsp-, ftsZ-). The few individuals exhibiting other 91 

amplification patterns were classified as “undetermined status”. A quantitative-PCR assay was used 92 

to measure Wolbachia titer in some individuals (see supplementary Methods). To characterize 93 

Wolbachia strain diversity, wsp PCR products were purified and Sanger sequenced using both 94 

forward and reverse primers by GenoScreen (Lille, France). Forward and reverse reads were 95 

assembled using Geneious® v.7.1.9 to obtain one consensus sequence per individual. To evaluate 96 

mitochondrial diversity, we amplified by PCR a ~700 bp-long portion of the Cytochrome Oxidase I 97 

(COI) gene in all individuals [38]. PCR products were purified and Sanger sequenced as described 98 

above. Haplotype network analysis was performed using the pegas package [39]. All statistical 99 

analyses were performed with R v.3.6.0 [40]. Figures were realized with ggplot2 [41]. 100 

 101 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510044
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

3. Results 102 

 103 

We tested the presence of Wolbachia and the f element in 647 individuals (423 females and 224 104 

males) from 16 populations across Europe and Japan (Tables 1, S1). While most males lacked both 105 

SRD, 48% of females carried at least one of them. The remaining females presumably carry W 106 

chromosomes, although the existence of other feminizing elements cannot be formally excluded. As 107 

expected for feminizing elements, the SRD were mostly found in females, the f element being more 108 

frequent than Wolbachia overall. Both SRD were found in the same individuals in only 3 females from 109 

a single population (Chizé). Wolbachia-infected individuals carried one of the three previously known 110 

Wolbachia strains of A. vulgare: wVulC (n=62), wVulM (n=23) or wVulP (n=4). 111 

Wolbachia and f element distribution in females was highly heterogenous among populations (Figure 112 

1a). These SRD were found in 10 and 11 out of 16 populations, but they reached frequencies >10% in 113 

only 6 and 7 populations, respectively. The two SRD coexisted in 8 populations. A generalized linear 114 

model predicting the frequency of the f element as a binomial response by the proportion of 115 

individuals carrying Wolbachia (each statistical unit being a population) showed that the prevalence 116 

of the two SRD was significantly negatively correlated (Chi-squared test, p < 7.9 × 10-8, 14 df) (Figure 117 

1b). Hence, in Floirac, Poitiers, Saint Julien l’Ars and Pisa populations, Wolbachia was frequent (23-118 

94% frequency in females) and the f element was rare (0-8%). By contrast, the f element was 119 

frequent (35-96%) and Wolbachia was rare (0-11%) in Prague, Beauvoir, Chizé, Coulombiers and La 120 

Crèche populations. In the other populations, both SRD were found at low to moderate frequency (0-121 

19%), including 3 populations devoid of both SRD (Lastovo, Hyogo and Bucharest). 122 

Males carrying Wolbachia or the f element were found in 2 and 4 out of 16 populations, respectively. 123 

In all cases, these males occurred in populations in which the corresponding SRD were the most 124 

prevalent ones in females: Beauvoir, Chizé, Coulombiers and La Crèche for the f element, and Floirac 125 

and Saint Julien l’Ars for Wolbachia. Overall, these males had much lower Wolbachia titer than 126 

females from their respective populations (Figure S1, Table S2). 127 

The 642 individuals sequenced at the COI gene presented a total of 92 segregating sites defining 23 128 

haplotypes (named I to XXIII; Table S3), with 1 to 7 haplotypes per population (Table S1, Figure 2). 129 

The most frequent and widespread haplotype (I) was found in 188 individuals from 10 populations. 130 

The second most frequent and widespread haplotype (V) was found in 106 individuals from 7 131 

populations. We found 21 out of the 23 haplotypes among individuals lacking both Wolbachia and 132 

the f element (Table 2, Figure 2). Among individuals carrying the f element, 6 haplotypes were found, 133 

all but one (I, II, III, V and VI) being shared with individuals lacking both Wolbachia and the f element, 134 
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and one (IV) being carried by a single individual in the entire dataset. Among Wolbachia-infected 135 

individuals, all those carrying wVulC were associated with either haplotype V or its close relatives (XI 136 

and XII). All individuals carrying wVulM were associated with haplotype II and those carrying wVulP 137 

with haplotype VII. Of the 5 haplotypes found in Wolbachia-infected individuals, 4 were shared with 138 

individuals lacking both Wolbachia and the f element (II, V, VII and XII), 2 of which were also shared 139 

with individuals carrying the f element (II and V), and one (XI) was present in a single individual in the 140 

entire dataset. 141 

 142 

4. Discussion 143 

 144 

Our results provide direct evidence that the f element is overall more frequent than Wolbachia in the 145 

sampled A. vulgare populations. We detected the f element in 11 A. vulgare natural populations from 146 

4 European countries (Czech Republic, France, Germany and The Netherlands) and Japan. Together 147 

with its previous detection in Denmark [21], our results indicate that the f element has spread to a 148 

wide geographical range. The relative frequencies of the f element and Wolbachia are highly variable 149 

among populations and, in general, when one SRD is frequent, the other SRD is rare. Overall, these 150 

results are consistent with earlier results from the 1990’s [32], although no molecular assay allowing 151 

direct testing was available at that time and SRD presence or absence was inferred indirectly. 152 

As the Jtel marker is located across the site of integration of the f element in the A. vulgare 153 

chromosome [21], we may conclude that f element presence in various populations results from a 154 

single event of integration of a Wolbachia genome in the A. vulgare genome. An alternative scenario 155 

would require independent insertions at the same chromosomal site, which is highly unlikely. This 156 

conclusion contradicts an earlier hypothesis on the evolutionary dynamics of the f element, which 157 

suggested that the f element was unstably integrated in the A. vulgare genome, experiencing 158 

frequent loss from oocytes and recurrent gain from Wolbachia endosymbionts [22,23,42–44]. Under 159 

this scenario, multiple independent f-like elements would be expected to segregate at low 160 

frequencies in populations and they should be integrated in different genomic locations [16]. While 161 

our results do not formally invalidate the possibility of additional f-like integrations in A. vulgare 162 

populations, which the Jtel marker would not detect, all observations can parsimoniously be 163 

explained by a single origin of the f element. Examination of sex ratios from progenies of wild-caught 164 

females lacking both SRD may offer further insight into this issue. 165 
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Using molecular assays allowed us to circumvent two limitations of the previously used physiological 166 

test: the impossibility to detect Wolbachia and the f element in males, and the impossibility to detect 167 

individuals carrying both SRD. Regarding Wolbachia presence in males, the historic protocol was only 168 

applicable to females per design [29,30,32] and subsequent PCR screens for Wolbachia infection 169 

have mostly focused on testing females [20,30,31]. In fact, males have seldom been tested and found 170 

to carry Wolbachia [45]. Here, we detected Wolbachia in 7 males from 2 populations (Floirac and 171 

Saint Julien l’Ars), carrying either wVulC or wVulM strains. The failure of feminization by Wolbachia 172 

most certainly reflects insufficient bacterial titer to induce feminization (Figure S1). These field 173 

observations hence support the view that titer is an important factor for successful feminization, as 174 

low titer is linked to incomplete feminization and intersexual phenotypes [42,46]. 175 

We also detected the presence of the f element in 11 males from 4 populations. Historically, the 176 

presence of the f element in males has been indirectly inferred from crossings and the resulting sex-177 

ratios biases of progenies [22,43,47]. Our results constitute the first direct evidence for the presence 178 

of the f element in A. vulgare males. In all 4 populations in which f-carrying males were found, the f 179 

element was also frequent in females. Altogether, these observations suggest that the 11 males 180 

carrying the f element also carry the masculinizing dominant allele known as “M” [16,43,47]. Indeed, 181 

the M allele is able to restore a male phenotype in individuals carrying the f element [16,43,47]. 182 

Moreover, the M allele is thought to have been selected in response to female-biased sex ratios 183 

caused by the f element [47]. Thus, the M allele is expected to rise in frequency when the f element 184 

is frequent in a population [47], which is consistent with our observations. Unfortunately, no 185 

molecular marker of the M allele is currently available, which prevents any direct assessment of its 186 

actual presence in these populations. Thus, we cannot exclude that males carrying the f element 187 

simply carry non-feminizing variants of this SRD. 188 

Our results show that Wolbachia and the f element never co-occur at high frequency in any 189 

population. This apparent mutual exclusion can be explained considering that co-occurrence of 190 

multiple feminizing factors in a population should favor the most transmitted one [16,48]. Hence, 191 

Wolbachia is expected to lead to the loss of nuclear feminizing elements in A. vulgare populations. 192 

This situation does not result from an interference between chromosomes and Wolbachia within 193 

individuals, but from counter selection of nuclear feminizing alleles in a population that becomes 194 

increasingly biased towards females. Hence, the rise of Wolbachia would associate with the decline 195 

of the f element in a population. Why, under these circumstances, Wolbachia has not invaded all A. 196 

vulgare populations is still unclear and may reflect fitness effects or possible resistance genes. 197 
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As a result, only very few individuals were found to carry both Wolbachia and the f element. They 198 

represent only 3 females, all from the Chizé population (Figure 1a). These were likely born from 199 

mothers carrying Wolbachia and fathers carrying the f element, which are frequent at Chizé. The 200 

apparent absence of carriers of both SRD in other populations where these SRD are present could 201 

simply be explained by the paucity of males carrying the f element. 202 

Mapping SRD distribution onto mitochondrial genealogy showed excellent congruence between 203 

Wolbachia strains and mitochondrial haplotypes (wVulC-V, wVulM-II and wVulP-VII). Such strong 204 

association has previously been noted in A. vulgare-Wolbachia interactions at a smaller geographic 205 

scale [30,31] and, more generally, in many arthropod-Wolbachia interactions [49]. This result 206 

corroborates the rarity of non-maternal transmission of Wolbachia in A. vulgare. By contrast, the f 207 

element was found in 6 different mitochondrial backgrounds (I-VI) scattered across the 208 

mitochondrial phylogeny, indicating no particular association between the f element and 209 

mitochondria. This result confirms and extends earlier data focused on western France and in which f 210 

element presence in females was indirectly inferred based on sex ratios of their progenies [30]. This 211 

observation can be explained by the occasional paternal transmission of the f element, which breaks 212 

its association with mitochondrial background [16,22,30]. 213 

  214 
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 216 
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Figure legends 232 

 233 

Figure 1. (A) Prevalence of Wolbachia and the f element in males (m) and females (f) from 16 234 

Armadillidium vulgare populations. (B) Relative proportions of Wolbachia and the f element in 16 A. 235 

vulgare populations (represented by open circles).  236 

 237 

Figure 2. Haplotype network of 23 mitochondrial variants (I-XXIII) from 16 Armadillidium vulgare 238 

populations. Each circle represents one haplotype and circle size is proportional to the number of 239 

individuals carrying the haplotype. Branch lengths connecting circles are proportional to divergence 240 

between haplotypes. Sex ratio distorter frequencies are color-coded for each haplotype. 241 

 242 
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Table 1. Prevalence of Wolbachia and f element sex ratio distorters in 16 populations of Armadillidium vulgare. 243 

 244 

Population Country 
Sample 

size 
Sex 

Number of 

individuals 

No f element, 

no Wolbachia 

Only f 

element 

Only Wolbachia Both wVulM 

and f element 

Undetermined 

status wVulC wVulM wVulP Undetermined 

Lastovo Croatia 54 Males 30 30        

   Females 24 24        

Prague Czech Republic 36 Males 9 9        

   Females 27 1 26       

Beauvoir France 31 Males 6 5 1       

   Females 25 9 14  1    1 

Chizé France 52 Males 8 2 6       

   Females 44 3 36  2   3  

Coulombiers France 24 Males 4 2 2       

   Females 20 6 13 1      

Floirac France 114 Males 38 34  2     2 

   Females 76 21 6 40 9     

Gript France 45 Males 15 15        

   Females 30 26 2 2      

La Crèche France 58 Males 21 19 2       

   Females 37 23 13 1      

Poitiers France 23 Males 4 4        

   Females 19 10 1   4 4   

Saint Julien l'Ars France 31 Males 14 9  1 3  1   

   Females 17 1  12 3    1 

Göttingen Germany 24 Males 7 3       4 

   Females 17 11 3  2    1 

Pisa Italy 28 Males 15 15        

   Females 13 10  3      

Hyogo Japan 50 Males 21 18       3 
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   Females 29 26       3 

Tottori Japan 49 Males 21 21        

   Females 28 26 2       

Bucharest Romania 17 Males 9 9        

   Females 8 8        

Wageningen The Netherlands 11 Males 2 2        

   Females 9 7 1      1 

Total males    224 197 11 3 3  1  9 

Total females    423 212 117 59 17 4 4 3 7 

Total    647 409 128 62 20 4 5 3 16 

 245 

  246 
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Table 2. Distribution of mitochondrial haplotypes in 642 Armadillidium vulgare individuals from 16 populations. 247 

 248 

Sex ratio distorter status Number of individuals Haplotype number Haplotype list 

No f element, no Wolbachia 404 21 I, II, III, V, VI, VII, VIII, IX, X, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII 

f element only 128 6 I, II, III, IV, V, VI 

Wolbachia (wVulC strain) only 62 3 V, XI, XII 

Wolbachia (wVulM strain) only 20 1 II 

Wolbachia (wVulP strain) only 4 1 VII 

Wolbachia (undetermined strain) only 5 2 II, VII 

Both wVulM and f element 3 1 II 

Undetermined status 16 4 I, V, VI, XIX 

 249 

 250 
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