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Abstract
Many arthropods, including terrestrial isopods, are capable of entering a state of tonic immobility upon a 
mechanical disturbance. Here we compare the responses to mechanical stimulation in three terrestrial isopods 
Balloniscus glaber, B. sellowii and Porcellio dilatatus. We applied three stimuli in a random order and recorded 
whether each individual was responsive (i.e. showed tonic immobility) or not and the duration of the re-
sponse. In another trial we related the time needed to elicit tonic immobility and the duration of response of 
each individual. Balloniscus sellowii was the least responsive species and P. dilatatus was the most, with 23% 
and 89% of the tested individuals, respectively, being responsive. Smaller B. sellowii were more responsive 
than larger individuals. Porcellio dilatatus responded more promptly than the Balloniscus spp. but it showed 
the shortest response. Neither sex, size nor the type of stimulus explained the variability found in the duration 
of tonic immobility. These results reveal a large variability in tonic immobility behavior, even between closely 
related species, which seems to reflect a species-specific response to predators with different foraging modes.
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Introduction

To be successful in avoiding their predators, preys engage in a multitude of behaviors, 
such as the construction of shelters (Manicom et al. 2008), decrease in activity and 
change in activity period according to their predator’s (Sakamoto et al. 2006), change 
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of foraging sites to decrease predator encounter chances (Lima and Dill 1990) and 
even foraging in sites that will allow a better chance of escape (Wirsing et al. 2007). 
However, predators have their strategies too, which often leads them to their prey. 
Once in close contact with a predator, prey may engage in a second class of anti-
predator strategies, i.e. to avoid being captured and/or being consumed. Amongst this 
class we find behaviors such as autotomy, release of chemical substances and tonic im-
mobility (Langerhans 2007).

Tonic immobility is a state of reversible physical immobility and muscle hyperto-
nicity, during which the organism lack responsiveness to external stimulation (Gallup 
1974). It is a widespread form of passive anti-predator behavior employed by a variety 
of animals such as reptiles (Santos et al. 2010), harvestmen (Machado and Pomini 
2008), orthopterans (Nishino and Sakai 1996, Faisal and Matheson 2001), coleopter-
ans (Miyatake et al. 2004), hymenopterans (King and Leaich 2006) and crustaceans 
(Holmes 1903, Saxena 1957, Bergey and Weis 2006, Scarton et al. 2009). Tonic im-
mobility is often called thanatosis or death-feigning, but these terms may be mislead-
ing in some cases where animals engaging in tonic immobility often assume different 
positions than dead animals (see Honma et al. 2006). Tonic immobility has been 
intensely addressed experimentally, especially in arthropods (Prohammer and Wade 
1981, Honma et al. 2006, Miyatake et al. 2009, Nakayama and Miyatake 2010). It 
has been show to function as a defense mechanism and have an adaptive significance in 
several situations. One is when immobility physically impedes consumption. Honma 
et al. (2006) demonstrated that the consumption of the grasshopper Criotettix japoni-
cus (Haan) by its frog predator Rana nigromaculata Hallowell was reduced because the 
posture assumed during tonic immobility enlarged the grasshopper’s functional size 
and this was effective against the gape-limited predator (Honma et al. 2006). Other 
situations are when predators lose interest in unmoving prey (Miyatake et al. 2004) 
and when feigners are less likely to be preyed when in the presence of non-feigners 
(Miyatake et al. 2009). One common characteristic that emerges from these studies 
is that there is often a high intraspecific variability in tonic immobility behavior. This 
variability manifests both in relation to the responsiveness of the individuals and in the 
duration of their responses. It has been shown that both characteristics have a genetic 
basis (Prohammer and Wade 1981, Miyatake et al. 2004).

Amongst crustaceans, tonic immobility has been observed in crabs and terrestrial 
amphipods and isopods. Terrestrial isopods (Oniscidea) are preyed upon by a large 
variety of animals: spiders (Řezáč and Pekár 2007), chilopods (Sunderland and Sutton 
1980), opiliones (Santos and Gnaspini 2002), ants (Dejean 1997), land flatworms 
(Prasniski and Leal-Zanchet 2009), amphibians and reptiles (Vitt et al. 2000, Van 
Sluys et al. 2001), among others. These predators employ a variety of prey-seeking and 
prey-handling behaviors. Naturally, terrestrial isopods have responded to this preda-
tion pressure by developing a variety of anti-predator strategies, which include a com-
bination of behavioral and morphological traits (Schmalfuss 1984) and also a form of 
chemical defense which is unique among crustaceans (Gorvett 1956, Deslippe et al. 
1996). According to behavioral and morphological traits related to predator avoidance, 
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isopod species can be grouped into ecomorphological groups, as proposed by Schmal-
fuss (1984): The “runners” are narrow, have long and strong pereopods adapted to run 
and escape fast when they are uncovered or disturbed. The “clingers”, on the other 
hand, have broad tergites, short pereopods, and flattened bodies and when disturbed, 
tend to remain motionless and tightly attached to the substrate. The “rollers” are capa-
ble of entering a state of tonic immobility when disturbed, forming a near perfect or a 
perfect ball which encloses the pereopods and pleopods and hides the ventral surface 
of the animal. The “spiny forms” are also conglobating forms that have, in addition, 
conspicuous dorsal spiny protuberances (Schmalfuss 1984).

The conglobation ability of “rollers” and “spiny forms” is, for sure, a well-known 
example of tonic immobility in response to disturbance. As pointed by Saxena (1957) 
when referring to the roller Armadillidium vulgare Latreille “a light pressure on the 
ventral side and sometimes a fall from a height of 2 or 3 inches will bring about this mo-
tionless state and induce the characteristic roll up into a ball like shape”. However, many 
other species of different ecomorphological groups, such as clingers (Schmalfuss 1984) 
and runners (Sokolowicz et al. 2008) are also capable of entering a state of tonic im-
mobility upon disturbance. In such groups, tonic immobility involves the contraction 
of the body to form a comma-like shape and the contraction and folding of the legs 
towards the ventral side while holding the antennae folded or extended backwards and 
pressed against the dorsal contour of the first pereonites (pers. obs.). Although tonic 
immobility is a widespread response in terrestrial isopods, it has not been addressed 
experimentally, except for the work of Saxena (1957). Here we compare the respons-
es to mechanical stimuli of three species belonging to the clinger ecomorphological 
group. Two are close-related species: Balloniscus glaber Araujo & Zardo and Balloniscus 
sellowii (Brandt) (Balloniscidae) and the other is a Porcellionidae, Porcellio dilatatus 
Brandt. We ask the following questions: (1) Do the species differ in responsiveness to 
tonic immobility-inducing stimuli? (2) Does the responsiveness depend upon sex, size 
or stimulus? (3) Is the duration of tonic immobility influenced by sex, size or type of 
stimulus, and does it differs between species? (4) Is the duration of tonic immobility 
related to the time needed to elicit a response?

Methods

Species sampling and laboratory conditions

Leaf litter samples containing B. glaber, B. sellowii and P. dilatatus (Fig. 1) were collect-
ed in urban areas and vicinities of the campus of Universidade Federal do Rio Grande 
do Sul, in Porto Alegre, in the south of Brazil. Balloniscus glaber were captured in July 
2008, and B. sellowii and P. scaber, in July and November 2009, respectively.

In the laboratory, we randomly pick 60 intermoult individuals (near 1:1 sex ratio) 
of each species and put them individually in Petri dishes (9 cm diameter) containing 
moist soil, food (decayed leaves) and plastic black shelters. They were left undisturbed 
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for 72 h prior to the trials. Ovigerous females or females with an empty marsupium 
were not used in the trials. The isopods were maintained side by side in a large shelve, 
about 1.30 m height, illuminated by phosphorescent light, in a room with tempera-
ture of 20°C and a 12:12 photoperiod. To minimize manipulation prior the trials, the 
individuals were measured (cephalothorax width) only at the end of the experiments.

Types of stimuli

We choose three different stimuli to be applied to the isopods: touch, squeeze and 
drop. These stimuli are known to elicit tonic immobility as they frequently did so when 
we are handling isopods of various species in the laboratory, and they could mimic the 
mode of action of different predators. The stimulus “touch” consisted of repeatedly 
pinching the isopod’s body laterally with the tip of a metal forceps and gently pushing 
it. When inspecting soil and litter samples, it is very common to observe tonic immo-
bility in the isopods after touching/pushing then (pers. obs.). The stimulus “squeeze” 
consisted of grabbing the isopod with a forceps and slightly squeezing it, in an attempt 
to simulate the bite of an ant. The “drop” stimulus consisted of grabbing the isopod 
with a forceps, lifting it approx. 10 cm and then letting it drop in the dish. Here we 
were trying to mimic a larger predator, such as a small bird or lizard, letting the isopod 
to fall after grabbing it. The experiments that will be described below were conducted 
always by two observers, and the observer that applied the stimuli to the isopods was 
the same throughout all the trials. Care was taken to apply the stimuli and not causing 
injuries to the isopods. In fact, seven P. dilatatus and one B. sellowii died during the 
acclimation period but there was no mortality during the experiments.

Experiment 1

To answer questions 1, 2 and 3 we applied the three different stimuli described above 
to each individual in a random sequence. Each species was tested on a separate day, 
and all individuals of the same species were tested on the same day. Before starting 
the trials, the shelters and leaves were removed from all petri dishes to allow a proper 
observation of isopod behavior.

We started the trial by randomly picking a number corresponding to an individual 
and a number corresponding to a stimulus to be applied to that individual (e.g. 1 for 
touch, 2 for squeeze, 3 for drop). Then, we removed the lid of the petri dish and applied 
the stimulus to the isopod. The stimulus was repeated up to 3× in case of “squeeze” or 
“drop” or 5× in case of “touch”. If the stimulus did not elicited tonic immobility, the 
individual was considered non-responsive. If the individual responded, i.e. showed the 
characteristic posture of tonic immobility (see Fig. 1), the duration of tonic immobil-
ity was recorded with a stopwatch. The end of the response was when the individual 
showed any slight movement, which usually began with a movement of the antenna. 
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The lid was placed again on the dish and another number was randomly picked. These 
procedures were repeated until all individuals have been subject to the three stimuli.

Experiment 2

To answer question 4 we conducted a second experiment, on the day after experiment 
1, with the same individuals. The order of the individual was defined randomly as in 
the experiment 1. We removed the lid of the dish and stressed the isopod with the tip 
of a forceps for up to 30 seconds, i.e. applying only the “touch” stimulus. If during this 
period the stimulus did not elicit tonic immobility, the individual was considered non-
responsive. If the isopod responded, it was recorded both the time it took to respond 
(to enter the posture) and the duration of response.

Analyses

Proportion data from experiment 1 was compared with a G test of independence (for 
two samples) or a chi-square test (one sample). The relationship between individual 
size and its responsiveness was investigated with a logistic regression. To answer ques-

Figure 1. Terrestrial isopods studied in dorsal view: Balloniscus sellowii, B. glaber (Balloniscidae) and 
Porcellio dilatatus (Porcellionidae) (top) and their respective postures during tonic immobility (bottom). 
For Balloniscus sellowii a drawing made from a photograph is presented. Bars = 2 mm.
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tion 3, the differences in the duration of tonic immobility among species and stimuli 
was tested with ANOVA and Tukey test. Also for each species the relationship between 
duration and size was tested with ANCOVA using sex as the co-variable. Finally, to 
answer question 4, a linear regression was applied to verify if there was relationship be-
tween the time to elicit tonic immobility and duration of response (experiment 2). For 
all tests the duration of response was log-transformed. All tests were made using the R© 

Software v. 2.13.0 (The R Foundation for Statistical Computing 2011).

Results

Experiment 1

Do the species differ in responsiveness?

Porcellio dilatatus and B. glaber differed remarkably from B. sellowii (G=62.26; 
p<0.0001) (Fig. 2A): Porcellio dilatatus and B. glaber were the most responsive species 
and did not differ from each other; 89% and 78% of their individuals, respectively, 
were responsive to at least one of the stimuli applied; 51% of the responsive P. dilatatus 
individuals were responsive to all three stimuli applied, while only 12% of B. glaber 
individuals’ were so. Balloniscus sellowii differed from both species in that only 23% of 
the tested individuals were responsive to at least one stimulus and none responded to 
all three stimuli (Fig. 2A).

Figure 2. Responsiveness and tonic immobility duration in terrestrial isopods. A Percentage of respon-
sive individuals in the three species tested. The * indicates a significant difference between species, after a 
G-test. B Mean tonic immobility duration in seconds for each terrestrial isopod (considering all stimuli 
pooled) in experiment 1. Different letters indicate significant differences, after ANOVA and Tukey test.

Does the responsiveness change according to the sex, stimuli and size?

Regarding the different stimuli, P. dilatatus was responsive to the three stimuli equal-
ly (χ2=1.75; p=0.417), whereas B. glaber was more responsive to “drop” (χ2=11.703; 
p=0.003) and B. sellowii was more responsive to “touch” (Fig. 3A) (χ2=7.882; p=0.019). 
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The proportion of responsive males and females did not differ in all species (P. dilatatus 
χ2=0.111; p=0.73; B. glaber χ2=0.812; p=0.36; B. sellowii χ2=0.008; p=0.92) (Fig. 3B).

In relation to size, an interesting trend was observed. In P. dilatatus and B. glaber, 
responsiveness was independent of individual size. As mentioned above, most indi-
viduals of these species were responsive (Fig. 4). In B. sellowii, however, there were 
intraspecific differences in responsiveness: a fitted logistic regression indicated that the 
probability of being responsive is higher in younger individuals and decreased with size 
(=age) (Fig. 5) (Logistic regression: Model intercept=3.254; s.e.=1.39; p=0.019; Size 
(factor) = -2.821; s.e.= 0.951; p=0.003; AIC=60.21).

Is the duration of tonic immobility influenced by the species, stimulus, sex, or 
size?

The duration of tonic immobility was highly variable in all trials: it ranged from a few 
seconds up to 3 min in P. dilatatus, 7 min in B. sellowii and up to 12 min in B. glaber. 
The duration of response differed between species (Fig. 2B), but the effect of the differ-
ent stimuli was not significant (Table 1). Porcellio dilatatus remained in tonic immobil-
ity for a shorter time interval than the two Balloniscus species (Fig. 2B).

Using ANCOVA we verified that neither sex nor size of the isopods explained the 
variation found in the duration of tonic immobility (Table 2).

Figure 3. A Percentage of responsive individuals to each specific stimulus, in relation to the total num-
ber of responsive individuals of each species. B Percentage of responsive males and females in relation 
to the total number of males and females of each species tested. The * indicates a significant difference 
between stimuli, after a χ2 test.

Table 1. Differences in the duration of tonic immobility depending on the species and different stimuli.

ANOVA results
Factors d.f. SS MS F p
Species 2 8.91 4.45 13.36 p<0.001
Stimuli 2 0.93 0.46 1.39 p=0.250
Residuals 190 63.34 0.33
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Table 2. Relationship between the duration of tonic immobility and individual size (cephalothorax width 
in mm) and sex (co-variable).

ANCOVA results
Factors d.f. SS F p

Porcellio dilatatus
Size 1 0.143 0.587 0.44
Sex 1 0.836 3.426 0.07
Size:Sex 1 0.147 0.602 0.44
Residuals 37 9.035

Balloniscus glaber
Size 1 0.052 0.226 0.63
Sex 1 0.287 1.248 0.27
Size:Sex 1 0.019 0.085 0.77
Residuals 27 6.215

Balloniscus sellowii
Size 1 0.366 1.127 0.30
Sex 1 0.514 1.582 0.22
Size:Sex 1 0.516 1.583 0.22
Residuals 16 5.205

Figure 4. Size and response to the stimuli in A Porcellio dilatatus and B Balloniscus glaber. Responsive 
individuals are represented with black marks and non-responsive individuals with grey marks.
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Experiment 2

Is the duration of tonic immobility related to the time needed to elicit a response?

In this experiment, 77% P. dilatatus, 65% B. glaber and 34% B. sellowii individuals 
responded to the stimulus within the 30 seconds. Upon visual inspection of data in Fig. 
6 it can be seen that for none of the species there was a relationship between the time 
elapsed until tonic immobility and the duration of the response, which was confirmed 
with the linear regression analysis (see Fig. 6). In the case of both Balloniscus species 
there were individuals that responded promptly (in less than 5 s) or took more than 20 
s to respond and remained in tonic immobility for short time intervals (less than 10 sec) 
and long time intervals (4 to 5 min). In all species tonic immobility duration was highly 
variable among individuals and it was independent of the time that each individual took 
to respond (Fig. 6). However, it can be noted a different pattern of response in P. dila-
tatus: 99% of the responsive individuals responded within 7 s of stimulation (Fig. 6).

Figure 5. Responsiveness of B. sellowii individuals in relation to size. The line models the probability of 
being responsive according to the individual size (after a logistic regression). The black and grey symbols 
show the responsive and non-responsive individuals, respectively.
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Figure 6. Relationship between the time elapsed until the beginning of tonic immobility and the dura-
tion of response, for responsive individuals in experiment 2. The values indicate the results of the linear 
regression analysis.
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Discussion

In this study we used two intrinsic factors (sex and size of the individuals) and one 
extrinsic factor (different stimuli) to try to explain the intraspecific variability found 
with respect to the responsiveness and duration of the tonic immobility showed by ter-
restrial isopods. We found an influence of the size in the responsiveness of B. sellowii 
and an influence of the type of stimulus in both Balloniscus species. Regarding the 
duration of tonic immobility, none of the factors explained the variability exhibited by 
the individuals. These findings are discussed below in more detail.

Males and females of different species are known to differ in responsiveness and 
duration of tonic immobility. For instance, in the beetle Callosobruchus maculatus 
(Fabricius) the females had a significantly higher frequency and longer duration of 
tonic immobility than males (Myatake et al. 2008a). In the freshwater crab Trichodac-
tylus panoplus von Martens females stayed immobile for longer time than males (Scar-
ton et al. 2009). In the terrestrial isopods studied here there was no indication of any 
sex-related differences in tonic immobility behavior, and maybe this indicates that 
both males and females are exposed to the same predators.

Upon encounter with a predator, a prey may run or enter tonic immobility, but it 
cannot adopt both strategies at the same time (Ohno and Miyatake 2007). In fact, there 
are many examples in the literature showing that prey specializes in one type of strategy 
at the expense of the other (Miyatake 2001a). King and Leaich (2006) found a negative 
relationship between tonic immobility and locomotor activity in the parasitoid wasp Na-
sonia vitripennis Walker. Also, a negative genetic correlation between tonic immobility 
intensity and locomotor activity (Nakayama and Miyatake 2010) was demonstrated in 
the beetle Callosobruchus chinensis (L.), both for field populations and populations artifi-
cially selected for either tonic immobility intensity or flying ability (Ohno and Miyatake 
2007). Here we observe that, in contrast to the other species, B. sellowii does not engage 
in tonic immobility very often, and their smaller (= younger) individuals were more 
likely to do so than the larger (= older) individuals. Based on that observations, we pro-
pose that B. sellowii may change its anti-predator behavior along its lifetime, employing 
tonic immobility more often when young and small and adopting a more active escape 
strategy, as running, when older (= larger). In the same line, days-old workers of the 
ant Solenopsis invicta Buren responded to intraspecific aggression with tonic immobility, 
however when months-old the workers responded to the same aggressors with a more 
active response, by fighting back (Cassill et al. 2008). This strategy, employed against ag-
gressive conspecific ants, is effective because days-old workers have a relative soft exoskel-
eton and at this stage tonic immobility increase their survivorship (Cassill et al. 2008).

Among the extrinsic factors that are known to influence responsiveness to tonic 
immobility-inducing stimuli, temperature (Miyatake et al. 2008a), light (Saxena 1967, 
Miyatake 2001a) and starvation (Miyatake 2001b) have been stressed. In addition to 
that, here we demonstrated that the type of stimulus can also influence responsiveness. 
Although there was no record in the literature of tonic immobility being shown by iso-
pods upon a encounter with a predator, it can be hypothesized that the characteristic 
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posture observed during tonic immobility by terrestrial isopods increase survivorship 
in two ways: it could increase resemblance with the substrate and make the animal less 
conspicuous to a visual predator (if compared to a moving prey) (Bergey and Weis 
2006) and/or it could difficult the predator’s access to its vulnerable ventral surface. In 
this last scenario, tonic immobility could be effective against an attack by a small inver-
tebrate that capture prey by biting or stinging, such as spiders or ants. By responding 
more to “drop” than to the other stimuli B. glaber seems to be responding to visual 
predators larger than an isopod, such as reptiles, that possibly lose their prey, in which 
case they would enter tonic immobility and foil the predator. On the other hand, B. 
sellowii responded more to “touch”, which could indicate a response to a smaller biting 
predator and the isopod would be protecting its ventral body parts. These predictions 
need, however, further testing.

Tonic immobility duration varies widely intraspecifically. For instance, Machado 
and Pomini (2008) reported that individuals of the harvestmen Camarana flavipalpi 
Soares can remain immobile for 8 s to nearly 11 min, and Hoplobunus mexicanus 
(Roewer) from 21 s to 31 min (Pomini et al. 2010). Bergey and Weis (2006) noted 
that fiddler crabs can remain immobile for more than two hours, but on average dura-
tion ranges from 45 to 171 s. High intraspecific variability in the duration of tonic 
immobility was also evidenced here, especially for B. glaber and B. sellowii. In the 
present study, none of the intrinsic and extrinsic factors we tested explained the vari-
ability in the species studied. The duration of response is clearly associated with prey 
survival. Arduino and Gould (1984) indicate that animals engaging tonic immobility 
could be monitoring the environment for an opportunity to escape, so the variability 
observed in the duration of responses could reflect the time the individuals are waiting 
for the risk around them to decrease. Miyatake et al. (2004) demonstrated that beetles 
Tribolium castaneum (Herbst) selected for long duration of tonic immobility were less 
prone to predation than those selected for short duration after exposing them to the 
attack of a Salticidae spider, Hasarius adansoni Audouin (Miyatake et al. 2004). Recent 
studies with insects (Miyatake et al. 2008b, Nishi et al. 2010) and spiders (Jones et al. 
2011) indicate that the neurotransmitters dopamine and serotonin are involved in the 
regulation of tonic immobility duration.

In conclusion, we observe three different patterns of tonic immobility among the 
clingers studied. Balloniscus sellowii enters tonic immobility rarely, it is more likely 
to adopt an active defense, such as running. Balloniscus glaber is more responsive, ir-
respective of the stimulus applied, the sex or size of the individuals, and can stay in 
tonic immobility for a long time, which indicates that tonic immobility could be an 
important strategy for this species. Porcellio dilatatus is highly responsive, also irrespec-
tive of the stimulus applied, the sex or size of the individuals, but it shows a much 
shorter response. As pointed by Honma et al. (2006), to understand the evolutionary 
dynamics of prey interactions with their predators it is necessary to account for both 
the foraging mode of the predator and the predator-avoidance mode of the prey. Ex-
periments with the predators of isopods are needed to investigate the effectiveness of 
tonic immobility and the significance of the intraspecific variability to survivorship. 
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In the terrestrial environment, isopods can be preyed upon practically all invertebrate 
and vertebrate carnivores and omnivores. It seems that the multitude of anti-predator 
strategies they have (tonic immobility, secretion of adhesive substance, development 
of spiny tergites, long pereopods for running) could be a response to a history of a 
high predation pressure. More studies, however, are needed to investigate whether 
these strategies indeed improve survivorship upon encounter with a predator, and to 
elucidate to which predators each response works.
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