

Anais da Academia Brasileira de Ciências ISSN: 0001-3765 aabc@abc.org.br Academia Brasileira de Ciências Brasil

Diniz, Daniel G.; Varella, Jamille E.A.; Guimarães, Maria Danielle F.; Santos, Arthur F.L.; Fujimoto, Rodrigo Y.; Monfort, Karla C.F.; Pires, Marcus A.B.; Martins, Maurício L.; Eiras, Jorge C.
A note on the occurrence of praniza larvae of Gnathiidae (Crustacea, Isopoda) on fishes from Northeast of Pará, Brazil
Anais da Academia Brasileira de Ciências, vol. 80, núm. 4, diciembre, 2008, pp. 657-664 Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32713465007

- How to cite
- Complete issue
- More information about this article
- Journal's homepage in redalyc.org

Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative "main" — 2008/10/6 — 23:04 — page 657 — #1

Anais da Academia Brasileira de Ciências (2008) 80(4): 657-664 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc

A note on the occurrence of praniza larvae of Gnathiidae (Crustacea, Isopoda) on fishes from Northeast of Pará, Brazil

DANIEL G. DINIZ¹, JAMILLE E.A. VARELLA¹, MARIA DANIELLE F. GUIMARÃES¹, ARTHUR F.L. SANTOS¹, RODRIGO Y. FUJIMOTO¹, KARLA C.F. MONFORT¹, MARCUS A.B. PIRES¹, MAURÍCIO L. MARTINS² and JORGE C. EIRAS³

¹Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro s/n, Bairro Aldeia 68600-000 Bragança, PA, Brasil

²Universidade Federal de Santa Catarina, Departamento de Aqüicultura, CCA, Rodovia SC 404 Km 3 88040-900 Florianópolis, SC, Brasil

³Departamento de Zoologia e Antropologia, and CIIMAR, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal

Manuscript received on February 25, 2008; accepted for publication on June 14, 2008; presented by SERGIO VERJOVSKI-ALMEIDA

ABSTRACT

The infection of the estuarine teleost fishes *Mugil gaimardianus* Desmarest, 1831 (Mugilidae), *Arius phrygiat*, Valenciennes, 1839 (Ariidae), *Conodon nobilis* Linnaeus, 1759 (Haemulidae), *Cetengraulis edentulus* Cuvier, 18 (Engraulidae), and *Anableps anableps* Linnaeus, 1758 (Anablepidae) by praniza larvae of Gnathiidae (Crustace Isopoda) was studied in specimens fished off the Atlantic Ocean in Northeast of Pará State, near Bragança, Braz The highest infection prevalence value was found in *Anableps anableps* (42.3%) and the lowest in *Conodon nobil* (9.1%). The mean intensity varied from 1 parasite in *Conodon nobilis* to 19.5 in *Arius phrygiatus*. A description of the larvae is provided. The morphology of the mouthparts is related to the blood sucking activity, and is compared we the characteristics of other gnathiidae species.

Key words: fish, parasites, Isopoda, Gnathiidae, Brazil.

INTRODUCTION

Gnathiid isopods are crustacea which are free-living as adults and have juvenile stages, the praniza larvae, which are temporary ectoparasites feed intermittently on the blood and tissue fluids of fishes, both elasmobranchs and teleosts (Davies 1981). There are twelve genera within the Gnathiidae family, and most of the species belong to the genus *Gnathia* (Smit and Davies 2004, Hadfield and Smit 2008).

The larval stages attach to the gills and skin and can cause focal lesions on the place of attachment (Heupel and Bennett 1999 González et al. 2004 Marino and Grutter 2005) or even cause the death of t (Mugridge and Stallybrass 1983).

Apparently these parasites are not host spec: were described from a number of hosts wor (Smit and Basson 2002, Smit and Davies 2004 and Grutter 2005, Genc et al. 2005). In some they can be very abundant: in *Dentex dentex* fr Western Mediterranean the prevalence of prantivae reached 85%, with a mean intensity of 20 sites per fish (González et al. 2004), and in *Epine aeneus* from the North-Eastern Mediterranean 57 the specimens were infected presenting a mean ir

DANIEL GUERREIRO DINIZ et al.

larvae. Moreover, we describe the morphology of the praniza larvae, and identify the most infected fish species in order to subsequently study their blood parasites since praniza larvae have been shown to transmit haemogregarines to fish (Davies 1982, Davies et al. 1994, Davies and Smit 2001), and the possibility of transmitting other blood parasites can not be ruled out.

MATERIALS AND METHODS

Specimens of the estuarine fish "tainha", Mugil gaimardianus Desmarest, 1831 (Mugilidae - 29 specimens), "peixe-gato", Arius phrygiatus Valenciennes, 1839 (Ariidae - 52), "jiquiri", Conodon nobilis Linnaeus, 1759 (Haemulidae-11), "sardinha", Cetengraulis edentulus Cuvier, 1829 (Engraulidae - 71) and "tralhoto", Anableps anableps Linnaeus, 1758 (Anablepidae - 59) were net-fished in the Atlantic Ocean, in the coastal zone of Pará State, near Bragança, Brazil, from August 2006 to February, 2007, and identified according to Santo et al. 2005. The fish were immediately transported to the laboratory, and were anaesthetized with benzocaine and sacrificed for parasite collection according to Ghiraldelli et al. 2006. Prevalence and mean intensity were calculated according to Bush et al. 1997. Ten praniza larvae, with origin in different host fish species, (total length: 2.09 ± 0.12 mm, 1.8-2.26 mm) were dissected for anatomical studies following the recommendations described elsewhere (Smit et al. 1999, Smit and Basson 2002). No attempts were made to moult the pranizae to adults.

RESULTS

The number of fish, the total length and weight of the specimens, the prevalence and mean intensity of infection are depicted in Table I.

The parasites were found only in the gill chamber with expanded anterior hindgut filled with host blood, attached to the gill filaments with the mouthparts. The gill filaments were not pale and there were apparently not relevant modifications of the host near the place of attachment of the parasites.

The highest prevalence value was found in Ana-

lower in the other species (varying between 2.2 and 3.4), the range being very high in *A. phrygiatus* (1–200 parasites) and much lower in the other species.

LARVAE MORPHOLOGY

The body of the larvae (Fig. 1A) is divided into three parts: the cephalosome (including the antennae and the mouthparts), the peraeon with five pairs of peraeopods, the pleon with five pairs of pleopods, and the telson with one pair of uropods.

The posterior margin of the cephalosome is slightly wider than the anterior one, almost as wide as it is long, presenting few setae on the posterior dorsal region. The lateral margins are straight and parallel. The well developed compound eyes are oval-shaped and located on the lateral margins of the cephalosome, and the length of the eye is more or less half of the length of the cephalosome (Fig. 1A). The cephalosome has straight medio-anterior margins with concave lateral excavations to accommodate the first articles of the antennae.

The antennae are straight, the antenna 2 being longer than the antenna 1. Antenna 1 has three pedunculate articles, the third of which is the largest (Fig. 1A). The flagellum has four articles, of which article 2 is the largest. Articles 2 and 3 have one aesthetasc seta each, and article 4 ends in one aesthetasc seta and two simple setae. Article 2, 3 and 4 presented few setae. Antenna 2 has four pedunculate articles, the fourth of which is the largest. The flagellum has seven articles, of which article 1 is the largest, article 7 ends in three or four simple setae, and few setae exist on the distal end of each article (Figs. 3A and 3B).

The labrum is prominent and semicircular, with an apical process, and its posterior and anterior margins are concave. The ventral part is gutter-like with a central groove, covering the mandibles both dorsally and laterally (Fig. 1A).

The gnathopods are smaller than the peraeopods, have seven articles, the dactylus is hooked, and they present a few simple setae without scales (Fig. 1B).

The paragnaths are prolonged and end in sharp points presenting no teeth (Fig. 1C)

658

"main" — 2008/10/6 — 23:04 — page 659 — #3

 \oplus


 \oplus

OCCURRENCE OF GNATHIIDAE IN PARÁ-BR

 TABLE I

 Biometric and parasitological data of the fishes captured from Northeast of Pará, Bragança, Brazil.

	M. gaimardianus	A. anableps	A. phrygiatus	C. nobilis	C. edentulus	
	(Mugilidae)	(Anablepidae)	(Ariidae)	(Haemulidae)	(Engraulidae)	
Total length (cm)	20.2 ± 2.9	21.4 ± 3.2	17.8 ± 5.6	14.5 ± 3.8	13.6 ± 1.0	
Weight (g)	84.2 ± 34.1	83.1 ± 36.1	53.0 ± 45.2	55.1 ± 49.4	21.5 ± 5.1	
Number of fish	29	59	52	11	71	
Parasitized fish	6	25	16	1	23	
Prevalence (%)	20.7	42.3	30.8	9.1	33.8	
Mean intensity	3.0 ± 6.1	3.4 ± 3.8	19.6 ± 48.9	1.0	2.3 ± 2.2	
Range	1-18	1–16	1-200	1	1–9	

Elso 1 Descional anno 111 at a france Calence Contacting anno 2011 at 2012 at 2012 at 2012 at 2012 at 2012

"main" — 2008/10/6 — 23:04 — page 660 — #4

 \oplus

 \oplus

DANIEL GUERREIRO DINIZ et al.

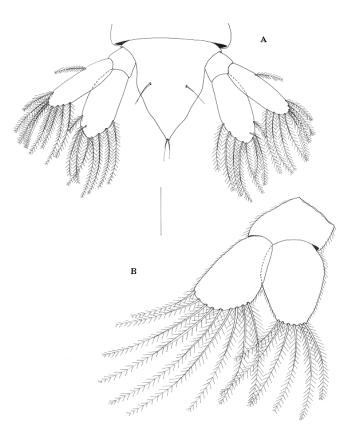
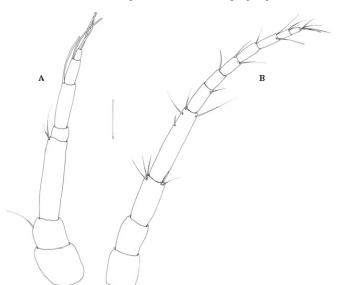



Fig. 2 – Praniza larvae collected from fishes of estuarine zone of Northeast of Pará, Brazil. A: Telson and uropods with setae. B: Right pleopod. Bar = 75μ m.

OCCURRENCE OF GNATHIIDAE IN PARÁ-BR

The mandibles are stout, swollen at the base, with the distal margin styliform with seven large triangular teeth on the medial margin, facing backwards, and one small tooth located at the tip of the mandible (Fig. 1E).

The maxilliped is large and cylindrical, with an elongated base. The palp has three articles, the first one being acute, with five teeth placed distally, and a single long simple setae ventrally located. Article 3 has six long simple setae (Fig. 1F).

The pereon is larger than the cephalosome and almost twice as long as it is wide. Pereonite 1 is fused with the cephalon (Fig. 1A), dorsally visible, and has shallow and convex anterior and posterior borders. Pereonite 2 has an anterior constriction separating it medially from pereonite 1. Pereonite 3 is the largest one and when the larvae are full of blood it represents about 50% of the body length. (Fig. 1A). Pereonite 4 is about twice as wide as it is long and has a rounded posterior margin stretching over pereonite 5, with lateral shields at the leg connection. Pereonite 5 consists of an elastic membrane with bulbous shields on its lateral sides at the leg connection. Pereonite 6 is rectangular and its posterior margin is slightly concave. Pereonite 7 is small and dorsally visible, with a rounded posterior margin overlapping the first pleonite (Fig. 1A).

The peraeopods show all six segments with simple setae in varying number (Fig. 4). They are divided at the base, ischium, merus, carpus, propodus and dactylus. The base is bigger than the others, with one simple seta. The ischium is three quarters of the length of the base, with the same width. The merus is three quarters of the length of the ischium, with an anterior bulbous protrusion and long simple setae. The carpus is the same length as the merus and equipped with a small bulbous protrusion. The size of the propodus is twice as long as the carpus, with one to four simple setae distributed at the back and at the front. The dactylus is the same size as the propodus, terminating in a sharp point with no setae.

The pleotelson is triangular in shape, longer than it is wide, with straight lateral margins, two simple setae on the dorsal surface, the distal tip ending in a pair of simple setae (Fig. 2A). setae. Short, simple setae are distributed laterally the margins (Fig. 2B).

The uropods have an endopod extending bey tip of the pleotelson, and exopods reaching the tip have eight plumose setae on the final appendage, a plumose setae on the medial region (Fig. 2A).

REMARKS

As shown in Table I there was a considerable tion concerning the prevalence and mean intensity between the different host species, as well as range of the parasites. Considering all the fea can be concluded that *A. phrygiatus* was the n fected species, in spite of higher values for preobtained for *C. edentulus* and *A. anableps*. He *A. phrygiatus* had a mean intensity of infecti range values much higher than the other specie fact is likely to be related to the benthonic beha the fish since the adults and larvae of gnathiids cated on the sea-bed, these fish are probably morinfected.

Comparing our values with literature report cerning the infection of other species it can be se there is a great variation between the prevalence tensity of infection, in some cases higher (Gonz al. 2004, Genc et al. 2005) and in others low the values obtained for our specimens (Grau et al Yuniar et al. 2007). According to Genc et al. who studied the infection of Epinephelus aneus North-eastern Mediterranean, the infestation in at higher temperatures and varied throughout the In our case, in spite of the relatively low number observed in order to draw conclusions about seas there are apparently no differences between the tion from August, 2006 to February, 2007. This related to a less variable water temperature arou year at our sampling site.

The pathology induced by these parasites is v (for review see Smit and Davies 2004). While so thors did not find relevant lesions caused by the pa others reported severe lesions or even the death hosts. Giannetto et al. (2003) reported the mort "main" — 2008/10/6 — 23:04 — page 662 — #6

DANIEL GUERREIRO DINIZ et al.

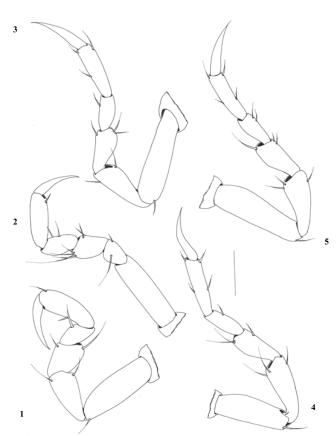


Fig. 4 – Peraeopods 1–5 of praniza larvae collected from fishes of estuarine zone of Northeast of Pará, Brazil. Bar = 150μ m.

the Red Sea, and also the death of fish from anaemia and stress, and Mugridge and Stallybrass (1983), described mortality of eels attributed to gnathiidae. In other cases focal lesions on the place of attachment of the larvae were described (Heupel and Bennett 1999, González et al. 2004, Marino et al. 2004), as well as the reduction of the haematocrit of the host (Jones and Grutter 2005).

In our specimens apparently there appeared to be no lesions other than the focal ones in the place of attachment, and the condition of the hosts was apparently unaltered.

The morphology of the larvae shows that the mouthparts are well adapted and modified for blood feeding. The backward directed teeth on the mandibles, and the hooked dactylus present at the extremity of the gnathopods, are very likely to contribute to the anchortured the larvae and the current taxonomy of gnathiids is based solely on the morphology of free-living adult males (Smit et al. 2003, Smit and Davies 2004). The general characteristics of our specimens are similar to those reported for other species (Davies 1981, Smit et al. 1999, Smit and Basson 2002, M.L. Coetzee, unpublished data). However, the comparison of our specimens with descriptions of other larvae descriptions (Table II) shows some differences, namely the relative small number of teeth on the mandible (7), and the lowest number of teeth (1) on the tip of the mandible, and the low number of setae in the pleotelson.

It is now well established that gnathiid larvae can transmit blood parasites to the fish, namely *Haemogregarina* spp., and act as definitive hosts during the life cycle of the parasite (Davies 1982, Davies et al. 1994,

⊕

"main" — 2008/10/6 — 23:04 — page 663 — #7

OCCURRENCE OF GNATHIIDAE IN PARÁ-BR

 TABLE II

 Comparison of the morphological characteristics of praniza larvae of this study and the praniza larvae of others

	Total L	Teeth on	Teeth on tip	Teeth on	Teeth on	Setae on	
Species	(mm)	the mandible	of mandible	the maxillipede	the maxillule	the pleotelson	Referen
Present study	2.0 ± 0.1	7	1	5	6	4	
							M.L. Coetz
Gnathia australis	2.3 ± 0.3	6	2	3–4	7	12	unpublishe
							data
G. nigro- grandilaris	6.1 ± 2.3	7	2	3–5	7	14	M.L. Coetz
							unpublishe
							data
G. trimaculata	4.0 ± 1.1	8	2	3-4	7	8	M.L. Coetz
							unpublishe
							data
G. africana	1.1 ± 3.9	7–8	2	7	6-8	6	Smit et al.
G. pantherina	3.9 ± 5.8	8	2	3–5	7	4	Smit et al.
G. maxillaris	2–3	12	2	9	9	_	Davies 198

the larvae. We do not know whether our fish hosts are infected by blood parasites and the continuation of this research aims to study of blood films to ascertain whether they are infected or not, as well as the examination of the gut content of praniza larvae to try to detect developmental stages of blood parasites as has already been demonstrated (Davies 1982, Davies et al. 1994, Davies and Smit 2001).

RESUMO

Foi estudada a parasitose dos peixes estuarinos *Mugil gaimardianus* Desmarest, 1831 (Mugilidae), *Arius phrygiatus* Valenciennes, 1839 (Ariidae), *Conodon nobilis* Linnaeus, 1759 (Haemulidae), *Cetengraulis edentulus* Cuvier, 1829 (Engraulidae), e *Anableps anableps* Linnaeus, 1758 (Anablepidae) por larvas praniza de Gnathiidae (Crustacea, Isopoda) em exemplares pescados no Oceano Atlântico, no Nordeste do Pará, próximo a Bragança, Brasil. O valor mais elevado da prevalência da infecção foi observado em *A. anableps* (42,3%) e o menor em *C. nobilis* (9,1%). A intensidade média da parasitose variou entre 1 parasita em *C. nobilis* até 19,5 em *A. phrygiatus*. Efetua-se a descrição da larva, verificando-se que a morfologia da armadura bucal está relacionada com a atividade sugadora

REFERENCES

- BUSH AO, LAFFERTY KD, LOTZ JM AND SHOSTA 1997. Parasitology meets ecology on its terms. J H 83: 575–583.
- DAVIES AJ. 1981. A scanning electron microscope s the praniza larva of *Gnathia maxillaries* Montage tacea, Isopoda, Gnathiidae), with special reference mouthparts. J Nat Hist 15: 545–554.
- DAVIES AJ. 1982. Further studies on *Haemogregaria mina* Laveran & Mesnil, the marine fish *Blenius p*. and the isopod *Gnathia maxillaries* Montagu. J Pr 29: 5767–583.
- DAVIES AJ AND SMIT NJ. 2001. The life cycle of *Haugarina* bigemina (Adeleina: Haemogregarinidae) African Hosts. Folia Parasitol 48: 169–177.
- DAVIES AJ, EIRAS JC AND AUSTIN TE. 1994. In tions into the transmission of *Haemogregarina b* Laveran and Mesnil, 1901 (Apicomplexa: Adeleon tween fishes in Portugal. J Fish Diseases 17: 283-
- GENC E, GENC MA, CAN MF, GENC E AND CENG 2005. A first documented record of gnathiid infest white grouper (*Epinephelus aeneus*) in Iskender (north-eastern Mediterranean), Turkey. J Appl 21: 448–450.
- GHIRALDELLI L, MARTINS ML, JERÓNIMO GT,

"main" — 2008/10/6 — 23:04 — page 664 — #8

DANIEL GUERREIRO DINIZ et al.

- GIANNETTO S, MARINO F, PARADISO ML, MACRI D, BOTTARI T AND DE VICO G. 2003. Light and scanning electron microscopy observations on *Gnathia vorax* (Isopoda: Gnathiidae) larvae. J Submicr Cytol Pathol 35: 161–165.
- GONZÁLEZ P, SANCHEZ MI, CHIRIVELLA J, CARBONELL E, RIERE F AND GRAU A. 2004. A preliminary study on gill metazoan parasites of *Dentex dentex* (Pisces: Sparidae) from the western Mediterranean Sea (Balearic Islands). J Appl Ichthyol 20: 276–281.
- GRAU A, RIERA F AND CARBONELL E. 1999. Some protozoan and metazoan parasites of the amberjack from the Balearic Sea (western Mediterranean). Aquacult Int 7: 276–281.
- HADFIELD KA AND SMIT NJ. 2008. Description of a new gnathiid, *Afrignathia multicavea* gen. et sp.n. (Crustacea: Isopoda: Gnathiidae), from South Africa. Afr Zool 43: 81–89.
- HEUPEL MR AND BENNETT MB. 1999. The occurrence, distribution and pathology associated with gnathiid isopod larvae infecting the apaulette shark *Hemiscyllium ocellatum*. Int J Parasitol 29: 321–330.
- JONES CM AND GRUTTER AS. 2005. Parasitic isopods (*Gnathia* sp.) reduce haematocrit in captive blackeye thicklip (Labridae) on the Great Barrier Reef. J Fish Biol 66: 860–864.
- MARINO F, GIANNETTO S, PARADISO ML, BOTTARI T, DE VICO G AND MACRI B. 2004. Tissue damage and haematophagia due to praniza larvae (Isopoda: Gnathiidae) in some aquarium seawater teleosts. Dis Aquat Org 59: 43–47.

- MUGRIDGE ER AND STALLYBRAS HG. 1983. A mortality of eels, *Anguilla Anguilla* L. attributed to Gnathiidae. J Fish Diseases 6: 81–82.
- PAPERNA I AND OVERSTREET RM. 1981. Parasites and diseases of mullets (Mugilidae). In: AQUACULTURE OF GREY MULLETS (Oren OH, Ed.), Cambridge Academic Press, Cambridge, UK, p. 411–493.
- SANTO RVE, ISAAC VJ, SILVA LMA, DA MARTINELLI JM, HIGUCHI H AND SAINT-PAUL U. 2005. Peixes e camarões do litoral bragantino. MADAM, Belém, PA, Brasil, 268 p.
- SMIT NJ AND BASSON L. 2002. Gnathia pantherina sp.n. (Crustacea: Isopoda: Gnathiidae), a temporary parasite of some elasmobranchs species from southern Africa. Folia Parasitol 49: 137–151.
- SMIT NJ AND DAVIES AJ. 2004. The curious lifestyle of the parasitic stages of gnathiid isopods. Adv Parasitol 58: 289–391.
- SMIT NJ, VAN AS JG AND BASSON L. 1999. A redescription of the male and praniza of *Gnathia Africana* Barnard, 1914 (Crustacea, Isopoda, Gnathiidae) from southern Africa. Folia Parasitol 46: 229–240.
- SMIT NJ, BASSON L AND VAN AS JG. 2003. Life cycle of the temporary fish parasite, *Gnathia Africana* (Crustacea: Isopoda: Gnathiidae). Folia Parasitol 50: 135–142.
- YUNIAR AT, PALM HW AND WALTER T. 2007. Crustacean fish parasites from Segara Anakan Lagoon, Java, Indonesia. Parasitol Res 100: 1193–1204.

664