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ABSTRACT
The native ranges and invasion histories of many marine species remain elusive due to
a dynamic dispersal process via marine vessels. Molecular markers can aid in identifi-
cation of native ranges and elucidation of the introduction and establishment process.
The supralittoral isopod Ligia exotica has a wide tropical and subtropical distribution,
frequently found in harbors and ports around the globe. This isopod is hypothesized
to have an Old World origin, from where it was unintentionally introduced to other
regions via wooden ships and solid ballast. Its native range, however, remains uncertain.
Recent molecular studies uncovered the presence of two highly divergent lineages of
L. exotica in East Asia, and suggest this region is a source of nonindigenous populations.
In this study, we conducted phylogenetic analyses (MaximumLikelihood and Bayesian)
of a fragment of the mitochondrial 16S ribosomal (r)DNA gene using a dataset of
this isopod that greatly expanded previous representation from Asia and putative
nonindigenous populations around the world. For a subset of samples, sequences of
12S rDNA and NaK were also obtained and analyzed together with 16S rDNA. Our
results show that L. exotica is comprised of several highly divergent genetic lineages,
which probably represent different species. Most of the 16S rDNA genetic diversity
(48 haplotypes) was detected in East and Southeast Asia. Only seven haplotypes were
observed outside this region (in the Americas, Hawai’i, Africa and India), which were
identical or closely related to haplotypes found in East and Southeast Asia. Phylogenetic
patterns indicate the L. exotica clade originated and diversified in East and Southeast
Asia, and only members of one of the divergent lineages have spread out of this region,
recently, suggesting the potential to become invasive is phylogenetically constrained.
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INTRODUCTION
Numerous marine species have dispersed and established extensively throughout the world
viamarine vessels over the past several centuries (Banks et al., 2015;Carlton, 1987;Carlton &
Iverson, 1981). The native ranges and invasion histories of a large number of them, however,
remain elusive (i.e., they are cryptogenic), as a result of one or more of the following:
inadequate taxonomy; poor historical documentation (particularly for older introductions);
presence of cryptic lineages; and multiple inputs of invaders (Carlton, 1996; Carlton,
2009). Use of molecular data can greatly aid in the identification of their native ranges,
cryptic diversity, and of the source and recipient regions (Geller, Darling & Carlton, 2010).

The supralittoral isopod Ligia exotica Roux, 1828 represents a case of a widespread
cryptogenic taxon with an old, albeit poorly documented, history of human-assisted
dispersal (recognized as exotic in the type locality since its original description), as well as
a highly problematic taxonomy. Commonly known as wharf roach, this isopod has a wide
tropical and subtropical distribution, and is considered an alien species in different regions
of the world, where it is frequently found in harbors, and ports, and other man-made
structures (Schmalfuss, 2003; Taiti et al., 2003; Van Name, 1936; Yin et al., 2013). Similarly
to the other coastal members of Ligia, L. exotica is a direct developer (i.e., lacks a planktonic
larval stage; a feature of peracarids) that occupies a narrow vertical range between the
supralittoral and the waterline, mainly occurring on rocky substrates (Hurtado, Mateos &
Santamaria, 2010; Santamaria et al., 2013). The present-day broad distribution ofL. exotica,
including all continents except Europe and Antarctica, suggests that it possesses unique
invasive capabilities within Ligia. With the exception of Ligia oceanica, an endemic of the
Atlantic coast of Europe that has been introduced into some localities in the northern
Atlantic coast of the US (Richardson, 1905), all other coastal species of Ligia (∼30) do not
appear to have been moved by humans, or at least not to as many geographically distant
places as L. exotica (Schmalfuss, 2003).

An Old World origin has been proposed for L. exotica (Fofonoff et al., 2017; Van Name,
1936), from where it would have been unintentionally moved around the world on wooden
ships and solid ballast (Griffiths, Robison & Mead, 2011;Van Name, 1936). Ligia exoticawas
originally described by Roux (1828) from docks in Marseille (France), within the range
of its congener L. italica, a species that is native and broadly distributed throughout
the Mediterranean basin (Schmalfuss, 2003). Roux (1828) reasoned that a ship had likely
transported this isopod from Cayenne, French Guiana (South America). Remarkably,
L. exotica did not become established in the Mediterranean, and there are no other records
of its presence in this well studied basin (Cochard, Vilisics & Sechet, 2010; Fofonoff et al.,
2017; Roman, 1977). Roux’s description places the first record of introduction of L. exotica
at 189 years before present, but its introduction history would be older if his assertion
that it was introduced from South America is correct, because this region is not regarded
part of its native range. Consequently, L. exotica represents one of the oldest documented
introductions for a marine organism. A database of 138 other coastal marine invertebrate
species non-native to either Australia, New Zealand, or the United States (Byers et al.,
2015), indicates that only two other species have older documented introduction times: the
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green crab Carcinus maenas in 1817 (Say, 1818); and the hydrozoan Cordylophora caspia in
1799 (Byers et al., 2015).

Ligia exotica is also absent from the Atlantic coasts of Europe, where its congeneric
L. oceanica is native and widely distributed. For this region, there is only a 1936 report
of a L. exotica specimen found in a house in Amsterdam (Fofonoff et al., 2017; Holthuis,
1949). In addition, although a specimen assigned to L. exotica was collected on Sao Miguel
Island (Azores) in 1905 (Fofonoff et al., 2017), this isopod has not become established in
this archipelago, where the two European species, L. oceanica and L. italica, are present
(Cardigos et al., 2006).

In the NewWorld, L. exotica has a broad distribution along the Atlantic coast from New
Jersey (US) toMontevideo (Uruguay), including the Gulf of Mexico (Mulaik, 1960; Schultz,
1977; Schultz & Johnson, 1984). Collections of L. exotica in the US Atlantic, eastern Gulf of
Mexico, Brazil, and Uruguay date back to the 1880’s; whereas records in the western Gulf
of Mexico date back to the first half of the 20th century (Fofonoff et al., 2017; Richardson,
1905; Van Name, 1936). In this region, two species have been synonymized with L. exotica:
Ligia grandis Perty, 1834 from Brazil; and Ligia olfersii Brandt, 1833 from Florida to Brazil,
including the Gulf of Mexico (Schmalfuss, 2003). In addition, the Caribbean-endemic Ligia
baudiniana Milne Edwards, 1840 appears to have been described based on individuals
of L. exotica collected in Veracruz, Mexico (reviewed in Santamaria, Mateos & Hurtado,
2014), and the two species have been confused (i.e., Ligia exotica var. hirtitarsis Dollfus,
1890 = L. baudiniana; Schmalfuss, 2003).

Although L. exotica has been reported in the Pacific coast of the Americas, from the
Gulf of California, Mexico, to Punta Arenas, Chile (Van Name, 1936), this species appears
to be absent in this coast (Fofonoff et al., 2017). Ligia exotica may have been confused with
L. occidentalis, a species native to the Gulf of California and the Eastern Pacific region
between the Baja Peninsula and southern Oregon, which appears to correspond to a cryptic
species complex (Eberl et al., 2013; Hurtado, Mateos & Santamaria, 2010). Despite being
reported in theGulf of California (Mulaik, 1960;Richardson, 1905), L. exoticawas not found
during a comprehensive Ligia collecting effort along the shores of this basin and adjacent
regions (Hurtado, Mateos & Santamaria, 2010). Ligia gaudichaudii Milne Edwards, 1840,
which according to its original description ‘‘seems to come from the coasts of Chile’’, has
been synonymized with L. exotica, but its original locality is uncertain.

In Hawai’i, L. exotica was first reported in 1996, and previous records of this isopod in
the archipelago correspond to L. hawaiensis, an endemic species (Eldredge & Smith, 2001).
Although it may be present in other Polynesian islands (Fofonoff et al., 2017), the Indian
and Pacific Ocean harbor a number of very similar species that have been morphologically
assigned to L. exotica, but may correspond to different species (Schmalfuss, 2003; Van
Name, 1936). In Australia, L. exotica is regarded as introduced in the southeastern coast,
and cryptogenic in the northern coast (Dalens, 1993; Fofonoff et al., 2017; Green, 1962). In
Africa, L. exotica has been reported at multiple localities. It is considered introduced into
the Atlantic west-central coast and South Africa, and possibly native in the eastern coast
of the continent, where it is reported from Sudan to Mozambique, including Madagascar
(Ferrara & Taiti, 1979; Fofonoff et al., 2017;Griffiths, Robison & Mead, 2011; Roman, 1977).
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The region spanning East Asia to the southern tip of India is also suggested to be
part of the native range of L. exotica (Fofonoff et al., 2017). Molecular studies in East Asia
report cryptic diversity for this isopod and propose this region as a source of introduced
populations. Jung et al. (2008) re-assessed the previously reported (Kwon, 1993) occurrence
of L. exotica in South Korea, by conducting molecular phylogenetic analyses of a fragment
of the mitochondrial 16S ribosomal (r)DNA gene from individuals sampled along the
South Korean coast, as well as previously reported sequences of L. exotica from two
putative non-native populations in the US (i.e., Georgia and the Hawaiian island of
O’ahu). They found two highly divergent clusters in South Korea: the ‘‘eastern group’’,
which includes haplotypes occurring mainly along the eastern and southeastern coastlines
of South Korea; and the ‘‘western group’’, which includes haplotypes occurring mainly
along the western and southwestern coastlines of South Korea. These two lineages were in
turn highly divergent from the lineage comprised of the US haplotypes. Jung et al. (2008)
suggested that the ‘‘western group, ‘‘eastern group’’, and the L. exotica lineage from the
US, each represents a distinct species, and that L. exotica appeared to be absent from South
Korea. Their understanding on the phylogenetic relationships among the three lineages
was limited, however, due to the lack of outgroups in their dataset.

Yin et al. (2013) conducted morphological and phylogenetic analyses of Ligia specimens
sampled throughout the northeastern coastline of China. Their phylogenetic analyses
also included the sequences examined by Jung et al. (2008), and used several distant taxa
as outgroups. They found two highly divergent genetic lineages, and examination of
traditional morphological characters indicated that one corresponded to L. exotica and
the other to Ligia cinerascens Budde-Lund, 1885. The ‘‘eastern group’’ sequences of South
Korea, and those of Georgia and O’ahu, clustered within the L. exotica clade, whereas the
‘‘western group’’ sequences of South Korea clustered within the L. cinerascens clade. Within
the L. exotica clade, two highly divergent lineages were observed, one of which contained
the samples from Georgia and O’ahu, leading Yin et al. (2013) to suggest that East Asia was
a source of introduced L. exotica populations.

Examination of L. exotica from other putative native localities, as well as from additional
putative introduced populations, is needed to assess whether this isopod harbors additional
molecular diversity, and to better understand its evolutionary and invasion history. An
extensive dataset of Ligia sp. 16S rDNA sequences from Southeast to East Asia that have
not been included in any published analysis is available in GenBank. Herein, we report
phylogenetic analyses of these sequences, the ones reported for L. exotica and L. cinerascens
from published studies, and new sequences obtained from specimens of these isopods in
the Americas, Hawai’i, Africa, and Asia. Phylogenetic analyses of a subset of samples were
also conducted for the mitochondrial 12S rDNA and nuclear NaK genes. We conducted
phylogenetic analyses to: (1) establish whether the new sequences from Asia belong to
the L. exotica or L. cinerascens clades; (2) determine whether further molecular diversity
is found in these clades; and (3) shed light on the evolutionary and invasion history of
L. exotica.
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Figure 1 Sampled localities. Sampled localities in (A) the global range and (B) Asia. Dots represent L. ex-
otica; squares (gray) represent L. cinerascens. Colors correspond with lineages shown in Fig. 2. Map source:
Administrative Units (admin.shp). Edition 10.1. ArcWorld Supplement, 2012. Basemap created with Ar-
cGIS. Version 10.3, 2014; Esri, Redlands, CA, USA.

Full-size DOI: 10.7717/peerj.4337/fig-1

MATERIAL AND METHODS
Sampling
Specimens assigned to L. exotica were obtained from 42 localities around the world (Fig. 1;
Table S1).We also obtained specimens assigned toL. cinerascens (fromEast Asia), whichwas
used as an outgroup in the phylogenetic reconstructions. Phylogenetic analyses including
most Ligia species (LA Hurtado, pers. comm., 2018) indicate that L. cinerascens is sister to
the L. exotica clade. Yin et al. (2013) also found a sister relationship between L. exotica and
L. cinerascens, in a dataset that also included L. occidentalis, and used L. oceanica and Idotea
baltica (Idoteidae) as outgroups. The use of L. cinerascens as the only outgroup enabled
the retention of a higher number of confidently-aligned characters and less homoplasy,
which should enhance resolution within the L. exotica clade. Specimens were preserved in
70–100% ethanol. In addition to the above specimens, we used publicly available sequences
(see below and in Table S1).

DNA extraction, PCR, and sequencing
Total genomic DNAwas isolated from pleopods or legs of Ligia specimens with the DNeasy
Blood&Tissue kit (Qiagen Inc., Valencia, CA, USA) following themanufacturer’s protocol.
Due to its relative ease of amplification in Ligia and phylogenetic signal, numerous studies,
including those of L. exotica, have reported 16S rDNA gene sequences. To maximize the
number of publicly available records that could be compared, we targeted a ∼490-bp
region of the 16S rDNA gene, which was amplified with published primers 16Sar (5′-
CGCCTGTTTATCAAAAACAT-3′) and 16Sbr (5′-CCGGTCTGAACTCAGATCACGT-3′)
(Palumbi, 1996). Each PCR reaction contained 1–3 µl DNA template, 0.5 µl each primer
(10 pmol), 0.1 µl Taq DNA polymerase (5,000 units/µl), 0.5 µl dNTPs (10 mM), and
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Figure 2 Bayesian majority consensus tree of Ligia samples from localities in Fig. 1. The tree was ob-
tained by MrBayes for 16S rDNA (model GTR+ 0), and rooted with L. cinerascens. Letters denote four
major clades (i.e., A, B, C, and D) of L. exotica and three groups of haplotypes (i.e., D1, D2, and ‘‘D3’’) of
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the 12S rDNA and/or the NaK gene.ˆindicates specimen from Taiwan for which we were only able to se-
quence the 12S rDNA gene.

Full-size DOI: 10.7717/peerj.4337/fig-2
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status (see text).ˆindicates specimen from Taiwan for which we were only able to sequence the 12S rDNA
gene (see Table S1).

Full-size DOI: 10.7717/peerj.4337/fig-3

2.5 µl 10 × PCR buffer (15 mM MgCl2, 500 mM KCl, 100 mM Tris-HCl, pH 8.3). PCR
conditions used were: 4 min at 94 ◦C followed by 30 cycles of 1 min at 94 ◦C; 30 s at
49 ◦C, 1.5 min at 72 ◦C; and a final extension at 72 ◦C for 4 min. PCR products were cycle
sequenced at the University of Arizona Genetics Core (UAGC).

For a subset of individuals (see Table S1), we also amplified and sequenced a ∼495-
bp fragment of the 12S rDNA gene (primers crust-12Sf/crust-12Sr; Podsiadlowski &
Bartolomaeus, 2005) and a ∼709-bp fragment of the nuclear locus sodium–potassium
ATPase α-subunit (NaK) (primers NaK-for-b and NaK-rev2; Tsang et al., 2008).

Datasets and sequence alignment
Sequencher 4.8 (Genecodes, Ann Arbor, MI, USA) was used to assemble the new sequences
and trim the primer regions. We also included all 16S rDNA sequences of L. exotica and
L. cinerascens reported in Jung et al. (2008) and Yin et al. (2013), as well as 16S rDNA
sequences of specimens identified as Ligia sp. or L. exotica from Asia available in GenBank,
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but not incorporated into a published study (Table S1). When present, primer regions
were also removed from GenBank sequences.

All sequences were aligned in MAFFT v.7 (Katoh, 2013) online using the Q-INS-I
strategy, which considers the secondary structure of RNA, with default parameters (e.g., gap
opening penalty= 1.53).Unique haplotypeswere identified on the basis of absolute pairwise
distances calculated with PAUP v.4.0b10 (Swofford, 2002), and redundant sequences were
removed from analyses. Gblocks 0.91b (Castresana, 2000; Talavera & Castresana, 2007)
was used to identify positions with questionable homology that were removed prior to
phylogenetic analyses. The following GBlocks parameters were used: ‘‘Minimum Number
Of Sequences For A Conserved Position’’ = 50% of the number of sequences + 1 (i.e.,
42); ‘‘Minimum Number Of Sequences For A Flank Position’’ = 85% of the number of
sequences (i.e., 70); ‘‘Maximum Number Of Contiguous Nonconserved Positions’’ = 4
or 8; ‘‘Minimum Length Of A Block’’ = 5 or 10; and ‘‘Allowed Gap Positions’’ = half. In
addition to the 16S rDNA only dataset, we examined a dataset of 23 taxa containing the
concatenated 16S rDNA and 12S rDNA genes.

Phylogenetic analyses
To determine the most appropriate model of DNA substitution, jModelTest v.2.1.4
(Darriba et al., 2012) was used to calculate likelihood scores among 88 candidate models
for 16S rDNA gene, based on the fixed BIONJ-JC tree under the Akaike Information
Criterion (AIC), corrected AIC (AICc), and the Bayesian Information Criterion (BIC).
The best model selected by the BIC was employed in phylogenetic analyses, except in the
following two cases. First, if the selected model was not available in the specific Maximum
Likelihood (ML) or Bayesian Inference (BI) program, the next most complex model
was implemented. Second, considering the potential problems associated with using two
parameters, a proportion of invariable sites (I) and a Gamma distribution of rates among
sites (0), simultaneously in the model (see RAxML manual and Yang, 2006), we chose the
simpler 0 if the best model included both I and 0 parameters.

For the ML analyses, the CIPRES (Miller, Pfeiffer & Schwartz, 2010) implementations of
RAxML v. 8.2.10 (Stamatakis, 2014) and GARLI v.2.01 (Zwickl, 2006) were used. RAxML
executed 1,000 bootstrap replicates with a thorough ML search under the standard non-
parametric bootstrap algorithm and the GTR + 0 model, whereas GARLI implemented
1,000 bootstrap replicates, the BIC selected model, and all other settings as default.
The majority-rule consensus trees for each analysis were calculated using the SumTrees
command of DendroPy v.3.10.1 (Sukumaran & Holder, 2010). A third ML bootstrap
analysis was conducted with PhyML v3.0_360 (Guindon & Gascuel, 2003) as implemented
in a public server (http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=phyml).

For Bayesian Inference (BI), MrBayes v.3.2.6 (Huelsenbeck & Ronquist, 2001; Ronquist
& Huelsenbeck, 2003; Ronquist et al., 2012) as implemented in CIPRES, and Phycas v.1.2.0
(Lewis, Holder & Holsinger, 2005a) implemented locally, were employed. To alleviate
the unpredictable behavior in Bayesian analysis when dealing with hard polytomies
(i.e., ‘‘star-tree paradox’’), which can lead to arbitrary resolutions and overestimation
of posterior probabilities (Alfaro & Holder, 2006; Kolaczkowski & Thornton, 2006; Lewis,
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Holder & Holsinger, 2005b; Suzuki, Glazko & Nei, 2002; Yang & Rannala, 2005), an analysis
employing a polytomy prior was implemented in Phycas (see Phycas manual and Lewis,
Holder & Holsinger, 2005b). The following criteria were used to determine if the Bayesian
analyses had reached convergence, and if an adequate sample of the posterior had been
generated: (a) the posterior probability values tended to be stable; (b) AWTY (Nylander
et al., 2008; Wilgenbusch, Warren & Swofford, 2004) exhibited a high correlation between
the split frequencies of independent runs; (c) the average standard deviation of the split
frequencies of independent runs became stable and approached zero; (d) Potential Scale
Reduction Factor (PSRF), a convergence diagnostic obtained after summarizing the
sampled parameter values in MrBayes, was close to one; and (e) the Effective Sample
Size (ESS) for the posterior probabilities evaluated in Tracer v.1.6 (Rambaut et al., 2014)
exceeded 200. Samples prior to reaching stationarity were eliminated as ‘‘burn-in’’. The
posterior probability for each node was estimated by computing a majority-rule consensus
of post-burnin tree samples using the SumTrees command (Sukumaran & Holder, 2010).

Given the low number of alleles and shallow genetic divergences found within the clade
involving haplotypes detected in putative introduced populations (see ‘Results’; i.e., Clade
D in Fig. 2), we also conducted a maximum parsimony branch and bound search in PAUP*
v.4.0a149 (Swofford, 2002) for this clade. Ambiguous character optimization was achieved
by the accelerated transformation (ACCTRAN) algorithm. The conservative estimate of
pairwise genetic distances with Kimura-2-parameter (K2P) correction was calculated with
PAUP* v.4.0a149 (Swofford, 2002).

RESULTS
Model selection
For 16S rDNA, a total of 97 sequences of the L. exotica clade and 41 of the L. cinerascens
clade were examined (Table S1). The final 16S rDNA gene dataset excluding redundant
sequences consisted of 81 taxa (51 in the L. exotica clade and 30 in the L. cinerascens clade).
After alignment, a total of 454 characters (out of 488) were retained, for which homology
was reliable, and 97 of these were parsimony informative. jModelTest selected a complex
model (i.e., TPM2uf) with five substitution parameters (see jModelTest manual), +I, and
+0 according to the AIC (weight = 0.2607) and AICc (weight = 0.3509), and a relatively
simple model (i.e., HKY) with two substitution parameters (see jModelTest manual), +I,
and +0 according to the BIC (weight = 0.3183). Similarly, the best model selected for
the 16S rDNA + 12S rDNA concatenated dataset was also TPM2uf + I + 0 (BIC weight
0.31). When applicable in the different programs used, the exact models selected by the
three criteria were implemented. In addition, we implemented the GTR+ 0 model, which
was included in the 99.9% cumulative weight interval of all selection criteria, in all of the
methods, to assess the sensitivity of clade support values to variations in the substitution
model (Table S2).

Phylogenetic results
In general, the use of different substitution models or priors yielded similar overall
topologies of phylogenetic trees, although some discrepancies, reflected in node support
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Table 1 Genetic divergences amongmajor lineages within L. exotica and L. cinerascens. Conservative estimates of evolutionary divergence
among major lineages within L. exotica and L. cinerascens, as measured by percent Kimura-2-parameter distances. Lower matrix: distance range.
Upper matrix: average distance. Values on diagonal show minimum and maximum within-clade divergence. Empty cells: no ranges available
because selected clade was represented by a single sample.

L. exotica clade A L. exotica clade B L. exotica clade C L. exotica clade D L. cinerascens

L. exotica clade A – 11.5 12.5 10.5 10.4
L. exotica clade B 11.1–12.1 0.2–2.0 8.8 10.0 11.7
L. exotica clade C 11.9–13.2 7.3–10.8 6.3 7.6 13.6
L. exotica clade D 9.8–11.1 8.3–11.6 6.7–9.2 0.2–4.6 13.0
L. cinerascens 9.4–11.0 10.8–13.1 12.3–15.0 11.6–14.9 0.1–2.9

values (Fig. 2; Table S3), were observed among different approaches. Our phylogenetic
reconstructions (Fig. 2) recovered a highly supported split (Bootstrap Support (BS): 98–100;
Posterior Probability (PP): 100) between L. exotica and L. cinerascens. The L. cinerascens
clade is restricted to the northern part of East Asia, in the western coast of South Korea,
Honshu and Hokkaido in Japan, and northeastern China. Maximum K2P divergence
observedwithin this cladewas 2.9% (Table 1). TheNaK genewas obtained for 20 individuals
representing most of the main lineages of the L. exotica clade (see Table S1; Fig. 2), as well
several individuals assigned to L. cinerascens. Three fixed differences were detected between
the L. exotica clade and L. cinerascens, but no variation within them was found.

Our analyses revealed 23 new 16S rDNA haplotypes within the L. exotica clade (marked
with triangles in Fig. 2) that were not reported in the previous studies of Jung et al. (2008)
and Yin et al. (2013). The L. exotica clade was divided into four main lineages (named A, B,
C, and D). Node support for different datasets (i.e., 16S rDNA alone and 16S rDNA+ 12S
rDNA), methods and substitution models is shown in Table S3, and summarized in Fig.
2. In general, the main clades (B, C, and D) received high support from all analyses except
the ML analyses of the 16S rDNA dataset alone (see Fig. 2). Divergences between and
within main lineages are shown in Table 1. At the base of the L. exotica clade, a relatively
distant (K2P divergence = 9.8–13.2%) lineage from Kanagawa, Japan (A) diverged from
a clade that contains the remaining lineages (clade B + C + D; high support from all
analyses except ML of 16S rDNA). Within the latter clade, a basal split (K2P divergence
= 7.3–11.6%) is observed between a lineage consisting mainly of samples from temperate
regions in East Asia (clade B; maximum within-clade K2P divergence = 2.0%) and a clade
(i.e., C + D) containing the remaining lineages. Some of the populations in Clade B have
overlapping distributions with L. cinerascens in China (e.g., Tianjin and Shandong) and
the western coastline of South Korea (e.g., Boryeong) (Fig. 1). Within the clade C + D, a
basal divergence (K2P = 6.7–9.2%) is observed between a lineage from Okinawa, Japan
(C), which contains two highly divergent lineages from this island (6.3% K2P divergence),
and a clade (D) with the remaining samples (maximum within-clade K2P divergence
= 4.6%). Within clade D, several lineages are distinguished. The first (D1 in tree) is
restricted to East Asia localities (maximum within-clade K2P divergence = 1.3%; support
from ML was weak). The second (D2) has haplotypes found in East Asia, but also in
introduced populations from Hawai’i, Brazil, and Uruguay (maximum within-clade K2P
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divergence = 0.9%; well supported by all methods). The remaining haplotypes formed a
clade with a subset of the methods, but support was weak. We have therefore collapsed
it in Fig. 2, but labeled all these haplotypes as belonging to haplogroup ‘‘D3’’ (maximum
within-haplogroup K2P divergence = 1.1%). Haplogroup ‘‘D3’’ has haplotypes observed
in putative introduced populations from the Gulf of Mexico, Trinidad, Brazil, Uruguay,
South Africa, Mozambique, and is also found in South to East Asia (see ‘Discussion’ for
considerations of native range and introduced populations).

Figure 3 shows a strict consensus unrooted parsimony tree (made of the 18 most
parsimonious trees; CI excluding uninformative characters = 0.8421; RI = 0.9552) for
clade D (i.e., the only clade found to contain haplotypes found in putative introduced
populations). The three previously describedmain lineages within this clade are represented
by different haplotype colors (i.e., D1 green circles, D2 light blue circles, and ‘‘D3’’ dark
blue circles). Seven haplotypes were observed in putative introduced populations (see
‘Discussion’), three within D2 and four within ‘‘D3’’ (denoted by stars). ‘‘D3’’ contains the
haplotype that wasmost common in introduced populations of the Gulf ofMexico, and was
also found in the US Atlantic coast (Georgia), Trinidad (Chaguaramas Bay), Brazil (Ilha
Grande, Rio de Janeiro), Uruguay, and Cambodia. Another D3 haplotype was found in
Mexico (Veracruz), Trinidad (Chaguaramas Bay), and South Africa, but was not observed
in Asia. A third haplotype was observed in Mozambique, which likely represents another
introduced population, and in India. The fourth putatively introduced D3 haplotype was
only observed in South Africa. Within D2, a haplotype was found in O’ahu (Pearl Harbor)
and Hawai’i Island, which was also observed in Japan and Taiwan. Another D2 haplotype
was found exclusively in O’ahu (Honolulu Harbor). Finally, a third D2 haplotype was
observed in Brazil (Praia de Calhetas, Cabo de Santo Agostinho, Pernambuco), Uruguay,
as well as in Taiwan.

DISCUSSION
Multiple divergent lineages and taxonomic uncertainty
The L. exotica clade is comprised of highly divergent lineages, which probably represent
multiple species. Using morphological characters (i.e., number of segments in the second
antenna flagellum, uropod, characters of the telson and the shape of the appendixmasculina
on the second pleopod of adult males), Yin et al. (2013) concluded that members of clades
B and D in our phylogenetic tree correspond to L. exotica (they did not examine members
of clades A and C). Thus, it is possible that cryptic diversity occurs within the L. exotica
clade. High levels of cryptic diversity have been reported in numerous studies of Ligia
and other intertidal isopods regarded as single broadly distributed species (Hurtado, Lee
& Mateos, 2013; Hurtado, Mateos & Liu, 2017; Hurtado et al., 2016; Hurtado, Mateos &
Santamaria, 2010; Santamaria et al., 2017b; Santamaria et al., 2016; Santamaria, Mateos &
Hurtado, 2014; Santamaria et al., 2013).

Some of the lineages within the L. exotica clade, however, may correspond to species
that have been described in the East Asia region. For example, our Clade C samples,
from Okinawa and Kitadaito, may correspond to Ligia ryukyuensis Nunomura, 1983,
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described from the Ryukyu Islands (Nunomura, 1983), and/or Ligia daitoensis Nunomura,
2009, described from the Daito Islands (Nunomura, 2009). Similarly, our sample from
Kanagawa (Clade A) may correspond to Ligia yamanishii Nunomura, 1990 described from
the Tokyo Prefecture (Nunomura, 1990). South of Kaganawa, Ligia miyakensis Nunomura,
1999 and Ligia hachijoensis Nunomura, 1999 are also reported, both described from the
Izu Islands (Nunomura, 1999); and Ligia boninensis Nunomura, 1979, described from the
Bonin Islands (Nunomura, 1979), south of the Izu Islands. Schmalfuss (2003) indicates,
however, that the description of L. miyakensis does not allow separation from L. exotica,
and that L. hachijoensis is possibly conspecific with L. exotica. Unfortunately, the condition
of our specimens precluded adequate examination of their morphology, and future work
is needed to determine whether some of our lineages represent these species. Given the
taxonomic uncertainty, and to facilitate the discussion of our results, however, we refer to
lineages A, B, C, and D collectively as the L. exotica clade.

Native range and introduced populations
The observed phylogenetic patterns support an origin and long evolutionary history of
the L. exotica clade in the East and Southeast Asia region. Its sister relationship with
L. cinerascens, also distributed in East Asia, suggests that their ancestor occupied, and
diversified within, this region. Furthermore, a long evolutionary history of the L. exotica
clade within this region is also supported by the numerous diversification events that led
to highly divergent lineages, all of which, except for seven haplotypes within clade D, are
only found in this region. Clade D exhibits much higher genetic diversity within the East
and Southeast Asia region than in all other sampled regions collectively (i.e., the Americas,
Hawai’i, Africa and India), where only seven out of the 25 16S rDNA haplotypes found
in clade D were detected. Three of these seven haplotypes were also observed in East and
Southeast Asia. The other four, albeit not detected in this region, were only separated by few
substitutions (1–3 mutational steps away) from haplotypes found in East and Southeast
Asia, and it is possible that we failed to sample them in this region (individuals from
Veracruz, which had one of these four haplotypes have also the same 12S rDNA haplotype
found in an individual from Taiwan). Therefore, our results suggest the L. exotica clade
originated and diversified in East and Southeast Asia, and that recently, relative to the
diversification observed in this clade, members of Clade D have spread out of this region.

Although South Asia and the eastern coast of Africa have been suggested to be part of
the native range of L. exotica (Fofonoff et al., 2017), it is likely that the L. exotica populations
distributed there are introduced. Only one 16S rDNA haplotype was observed in these
two regions, which was not found in East and Southeast Asia, but is only separated by two
nucleotide differences from one observed in China. Finding the same haplotype between
these two distant regions (the distance between the localities in Mozambique and India is
∼6,000 Km) suggests that the specimens fromMozambique, at least, are non-native. South
Asia and the eastern coast of Africa harbor endemic species or lineages of other Ligia species,
and species in the Indian Ocean have often been misidentified as L. exotica (Schmalfuss,
2003; Taiti, 2014). Ligia exotica, thus, may not be as common as previously thought in
these regions, and scattered isolated introduced populations might occur within the range
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of native lineages, as observed in the Caribbean (see below). South Asia is home to Ligia
dentipes Budde-Lund, 1885, which has a broad distribution that spans the Nicobar Islands,
Andaman Islands, Maldives, Seychelles, Sri Lanka, and Thailand (Santamaria et al., 2017b;
Taiti, 2014). Three divergent (12–15% divergence at the COI gene) lineages of L. dentipes
were detected in a study that surveyed the Seychelles, Sri Lanka, and Thailand (Santamaria
et al., 2017b). Similarly, the eastern coast of Africa harbors two highly divergent lineages of
Ligia vitiensis (Dana, 1853), one distributed in Tanzania, Seychelles, and Madagascar, and
the other in Tanzania (Santamaria et al., 2017b). Other species reported in East Africa, but
lacking molecular data, are: Ligia ferrarai Kersmaekers & Verstraeten, 1990 in Madagascar;
Ligia pigmentata Jackson, 1922 in Somalia (also reported in the Red Sea and Persian Gulf;
although records for this last basin have been questioned; Khalaji-Pirbalouty & Wägele,
2010); and Ligia malleata Pfeffer, 1889 in Tanzania, which is possibly a synonym of L.
exotica (Schmalfuss, 2003).

Ligia exotica is considered introduced in South Africa (Griffiths, Robison & Mead, 2011),
where we found two haplotypes, differing at a single nucleotide position from each other,
belonging to haplogroup ‘‘D3’’. One of these haplotypes was also observed in Mexico and
Trinidad. Three species of Ligia are native to South Africa: Ligia dilatata Brandt, 1833
(also reported in Namibia); Ligia glabrata Brandt, 1833 (also reported in Namibia); and
Ligia natalensis Collinge, 1920 (Schmalfuss, 2003). These species appear to have a long
evolutionary history in South Africa (Greenan, Griffiths & Santamaria, 2017). Ligia exotica
populations in the Atlantic west-central coast of Africa are also considered introduced,
although genetic studies would be useful to verify species identity (Fofonoff et al., 2017).
Ligia exotica also does not appear to be native in Southwest Asia, and there is doubt about
reports of this isopod in the Red Sea (Khalaji-Pirbalouty & Wägele, 2010). The region has
several endemic Ligia species reported: Ligia dioscorides Taiti & Ferrara, 2004 from the
Socotra Archipelago in Yemen; Ligia persica Khalaji-Pirbalouty & Wägele, 2010 from the
Persian Gulf; and Ligia yemenica Khalaji-Pirbalouty & Wägele, 2010 from the Gulf of Aden
(Khalaji-Pirbalouty & Wägele, 2010).

Pacific populations outside East and South East Asia are also likely introduced. One of
the two L. exotica haplotypes found in Hawaii was also observed in East Asia (Taiwan and
Japan), and the other one differs at a single nucleotide position. As in the Indian Ocean,
a number of different species in the Pacific Ocean may have been wrongly assigned to L.
exotica (Schmalfuss, 2003;Van Name, 1936). Althoughwe did not examine individuals from
Australia, it is likely that populations of L. exotica in this continent are also introduced.
Two endemic species are reported there: Ligia australiensis Dana, 1853, which is widely
distributed in the coast of Australia, including Tasmania and Lord Howe Island; and
Ligia latissima (Verhoeff, 1926), endemic to New Caledonia (Schmalfuss, 2003). Future
work is needed to genetically characterize native and non-native Ligia from Australia.
Interestingly, despite reports of the occurrence of L. exotica in the Gulf of California
(Mulaik, 1960; Richardson, 1905), we failed to find it during extensive surveys of this and
the adjacent regions (Eberl et al., 2013; Hurtado, Mateos & Santamaria, 2010). Although
it is possible that L. exotica occurs in hitherto unsampled Pacific coast localities of the
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New World, it is likely that past records of this species were misidentifications of the
morphologically similar species L. occidentalis.

In the Americas, Ligia exotica is very common in the US Atlantic coast, Gulf of Mexico,
and the coastal region between Brazil and Argentina, where other Ligia species are rare
or absent. Records of L. exotica in the US Atlantic, eastern Gulf of Mexico, Brazil and
Uruguay date back to the 1880’s, and in the western Gulf of Mexico to the first half of the
20th century (Fofonoff et al., 2017; Richardson, 1905; Van Name, 1936). Within the Gulf of
Mexico (a mostly sandy coastline), jetties and other man-made structures have provided
suitable habitats for this isopod throughout the basin (Schultz & Johnson, 1984). Most of
this basin is devoid of other Ligia species, with the exception of a few localities in Florida
and Yucatán, where L. baudiniana is present (Santamaria et al., 2017a; Santamaria, Mateos
& Hurtado, 2014; LA Hurtado, pers. comm., 2018). Ligia exotica exhibits very low genetic
diversity in this region, with a single 16S rDNA haplotype observed, except for Veracruz,
where a different closely related haplotype was detected (both from the ‘‘D3’’ haplogroup).
The most common haplotype was also observed in Georgia, in the Atlantic coast of the
US, where L. exotica is also broadly distributed from New Jersey to Florida in the absence
of other Ligia, with the exception of the southern tip of Florida where L. baudiniana is also
reported (Schultz & Johnson, 1984).

In the Caribbean, we found L. exotica only in a small pile of rocks in a little harbor
in Trinidad, despite a major sampling effort for Ligia that included different countries
in the region, where the widely distributed native L. baudiniana was mainly recovered
(Santamaria, Mateos & Hurtado, 2014). Two haplotypes were found in Trinidad, one was
also observed in Veracruz, Mexico, and South Africa, whereas the other was also observed
in the Atlantic US, Gulf of Mexico, Brazil, Uruguay, and Cambodia. It is possible that some
of the previous reports of L. exotica in the Caribbean correspond to misidentifications, as
this species has been confused with L. baudiniana (Santamaria, Mateos & Hurtado, 2014;
Schmalfuss, 2003; Van Name, 1936).

In the Atlantic coast between Brazil and Argentina L. exotica appears to be broadly
distributed (Schmalfuss, 2003) in the absence of native Ligia (although L. baudiniana has
been reported in Rio de Janeiro (Van Name, 1936), this needs to be confirmed; we only
found L. exotica at this and a nearby locality). We sampled five localities in this region and
found one haplotype from clade D2 (also found in Taiwan) and one from haplogroup
‘‘D3’’ (identical to the most common haplotype found in the Gulf of Mexico). The presence
of two divergent haplotypes (separated by 16 nucleotide differences at the 16S rDNA gene)
suggests independent introductions have occurred in this region. Both haplotypes can
co-occur in close sympatry. In Uruguay, the two haplotypes were observed in specimens
collected concurrently from the same rock.

Phylogeographical patterns in East and Southeast Asia
Occurrence of multiple genetically divergent lineages within the L. exotica clade in East
and South East Asia is similar to the phylogeographic patterns observed in the following
recognized species of Ligia, whose distribution includes or is limited to tropical and/or
subtropical coasts of other regions: L. occidentalis, whose range spans the Pacific coast
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between central Mexico and southern Oregon, including the Gulf of California (Eberl
et al., 2013; Hurtado, Mateos & Santamaria, 2010); L. baudiniana in the Caribbean and a
small Pacific region between Central and South America (Santamaria, Mateos & Hurtado,
2014); L. hawaiensis in the Hawaiian archipelago (Santamaria et al., 2013); and L. italica
in the Mediterranean basin (LA Hurtado, pers. comm., 2018). The relatively high genetic
diversity of the L. exotica clade contrasts with the low diversity observed in its sister lineage
L. cinerascens (maximum K2P divergence within this species = 2.9%), suggesting different
evolutionary histories. One evident difference between the two lineages is their geographic
distributions. Within our study area alone, L. cinerascens was generally found in relatively
colder (mostly temperate) regions, including the northern Yellow Sea, Bohai Sea, Korean
Peninsula, and the northern portion of the Japanese archipelago. The range of L. cinerascens
extends further north into the Kuril Islands (Yin et al., 2013) and the Peter de Great Gulf
(i.e., the southernmost part of Russia in the Sea of Japan; Zenkevich, 1963). Although
the ranges of L. exotica and L. cinerascens overlap (Fig. 1), L. exotica is generally found in
warmer (tropical and subtropical) regions. Due to its distribution at higher latitudes, the
lower genetic diversity of L. cinerascensmay reflect a history of recent extinction-expansion
events associated with glacial and postglacial cycles. A similar pattern of recognized species
of Ligia from high latitudes (at least in the northern hemisphere) harboring low genetic
diversity occurs in L. pallasi (Eberl, 2013) and L. oceanica (Raupach et al., 2014).

Within the L. exotica clade, Clade B, which is mostly restricted to temperate areas,
exhibits comparatively lower genetic diversity (maximum K2P divergence = 2.0%) than
clades C and D, which occur in warmer regions. Lineage A was found only in Kanagawa,
Japan. The pattern of comparatively lower diversity within Clade B, whose distribution
overlaps with part of the range of L. cinerascens, may also be explained by a history of
recent extinction-recolonization events associated with glacial cycles. A similar pattern
of reduced genetic diversity at higher latitudes within a recognized coastal isopod species
occurs in the northernmost clade of L. occidentalis in California (Eberl et al., 2013), as well
as in the northernmost clade of the supralittoral isopod Tylos punctatus, between Southern
California and the Baja Peninsula (Hurtado et al., 2014).

Temperature also appears to be an important factor determining the distribution of
the other L. exotica lineages, which are found in warmer waters. Although the northern
distribution of L. exoticaCladeD1 overlaps with the southern range of Clade B in the Yellow
Sea, Clade D1 was detected as far south as Taiwan. Clade D2 was found in warmer waters.
A haplotype of this clade was observed in the southern coast of Honshu, Japan, which is in
a region with warmer water, and was also found in Taiwan and Hawai’i. The only locality
where lineage A was found is also in the southern coast of Honshu. Haplogroup ‘‘D3’’ was
restricted to warmer waters and reached the southernmost areas (i.e., Cambodia) in what
appears to be the native range of the L. exotica clade. Sea surface temperature (SST) appears
to be an important factor determining the distribution of lineages in L. occidentalis. In
this isopod, the geographical limit between two main clades largely reflects the changes in
SST that define the Point Conception biogeographical boundary in California (Eberl et al.,
2013). Although coastal Ligia are essentially terrestrial and do not venture into open water,
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SST influences abiotic factors likely important to their survival and reproduction, such as air
temperature, sea and land breezes, atmospheric humidity and coastal fog (Eberl et al., 2013).

A dynamic past geological history in the Southeast-East Asia region (Ni et al., 2014;
Wang, 1999) may have contributed to divergences within the L. exotica clade, but we cannot
pinpoint specific events. Opportunities for long-standing isolation and differentiation
appear to have occurred in the Japanese archipelago, as suggested by the divergent
lineages found in our analyses, and by the reports of several endemic Ligia species to
this region (Nunomura, 1979; Nunomura, 1983; Nunomura, 1999), discussed above. The
highly complex geological history of the Japanese archipelago is considered crucial in the
generation and maintenance of the high species diversity and endemism of this region
(reviewed in Tojo et al., 2017), considered a global hotspot of biodiversity (Ceballos &
Brown, 1995; Conservation International, 2016). Such history has been associated with
the presence of multiple highly divergent lineages in the also supralittoral isopod Tylos
granulatus (Niikura, Honda & Yahata, 2015), the sandy beach amphipod Haustorioides
japonicas (Takada et al., 2018), as well as in multiple insects (Tojo et al., 2017). It is
important to conduct a thorough examination of Ligia in the Japanese archipelago,
which likely will reveal additional diversity and will help to establish the distribution limits
of divergent lineages that appear to be endemic to this region (i.e., A and C). Relatively
deeper divergences within Clade D also suggest greater opportunities for diversification
have occurred in the warmer waters. The island of Taiwan also exhibits high levels of genetic
diversity, with the presence of multiple divergent lineages, as observed in the present study
and in a previous study based on the Cytochrome Oxidase I (COI) gene (Chang, 2013).

Evolution of ‘invasiveness’
Haplotypes found at putative introduced populations are restricted to clade D, and within
this clade, to haplogroupsD2 and ‘‘D3’’. Therefore, the potential to become invasive appears
to be phylogenetically constrained, and to have arisen recently relative to the diversification
observed in the L. exotica clade. A similar pattern is observed in the leafmining global fly
pest Liriomyza sativae, in which all invasive populations fall within a single clade (Scheffer
& Lewis, 2005).

The inherent traits that may enable certain genetic backgrounds of L. exotica to become
established at a non-native location might include higher tolerance to environmental
stresses associated with the journey and/or the new locality. Tolerance of higher
environmental temperatures (at least compared to L. cinerascens and L. exotica clades
A and B) might be associated with successful dispersal and establishment. Essentially, all
the introduced populations of L. exotica are found in tropical to subtropical locations.
Environmental similarity between donor and recipient regions might increase the chance
of a successful invasion (Seebens, Gastner & Blasius, 2013). Nonetheless, lineages of L.
exotica distributed in similarly warm waters (i.e., C and D1) are not found in introduced
populations. Their absence could simply reflect a lack of opportunity to ‘‘hitch a ride’’.
This might be a reasonable explanation for clade C, as it is only known from Okinawa,
but D1 has a relatively broader distribution in East Asia, that overlaps with that of D2
and ‘‘D3’’.
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Tolerance to desiccation might also be associated with invasive ability in L. exotica.
L. exotica individuals were likely unintentionally loaded onto ships along with ballast
stones commonly used during the 18th and 19th centuries, and dumped at the
destination port (Griffiths, Robison & Mead, 2011; Van Name, 1936). Isopods riding in
the holds of ships likely faced limited access to seawater. Low desiccation resistance
is a feature of the genus Ligia, constituting one of the factors that constrain its
coastal distribution to a very narrow vertical range between the supralittoral and
the water line (Carefoot & Taylor, 1995; Hurtado, Mateos & Santamaria, 2010). A
superior desiccation resistance and osmoregulation ability compared to L. taiwanensis
and/or L. cinerascens, which could enhance survival of such journeys, has been
reported in L. exotica from Taiwan (Tsai, Dai & Chen, 1997; Tsai, Dai & Chen, 1998),
where clade D occurs. Once in a new harbor, the availability of rocky habitat,
similar temperatures to source localities, and high reproductive rates would have
contributed to their successful establishment. Indeed, high reproductive rates have
been reported for L. exotica in an introduced Brazilian population (Lopes et al., 2006).

Finally, L. exotica do not appear to have evolved traits that enable them to outcompete
and displace native Ligia species. In some regions where other Ligia species are widely
distributed, establishment of introduced L. exotica populations has failed (e.g., the
Mediterranean, Atlantic Europe, the Azores), or only few scattered introduced L. exotica
populations have established, mainly in man-made rocky habitats (e.g., Hawaii and the
Caribbean). It is possible that the broad distribution of endemic L. occidentalis lineages in
the Gulf of California and Pacific coast between central US and southern Mexico precludes
the establishment of L. exotica in these regions. In contrast, absence of other Ligia species
may have favored the establishment and wide expansion of L. exotica in the US Atlantic
coast, the Gulf of Mexico, and the coast between Brazil to northern Argentina.

CONCLUSION
The present study capitalized on a large dataset of 16S rDNA sequences for Ligia specimens
from East and Southeast Asia. Addition of de novo sequences from other localities within
this region and putative introduced populations around the world, allowed for a broad
geographic representation of the widespread L. exotica. Phylogenetic analyses revealed
that the L. exotica clade originated and diversified in East and Southeast Asia, and
only members of one of the divergent lineages have spread out of this region recently,
suggesting that the potential to become invasive is phylogenetically constrained. Much
higher haplotype diversity was observed in East and Southeast Asia, than in the other
regions surveyed (Americas, Hawai’i, Africa and India), where only seven 16S rDNA
haplotypes were detected; which were identical or very closely related to haplotypes from
East and Southeast Asia. Multiple geographically distant introduced populations share the
same mitochondrial haplotype, but in the New World at least three haplotypes arrived.
This study also revealed interesting biogeographical patterns, such as the reduced genetic
diversity at higher latitudes. Our study demonstrates the potential of even modest genetic
information collected at broad scales, to substantially improve our understanding on the
evolutionary and invasive histories of cryptogenic species.
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