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Interactions between organisms and their environments are central to how biological
diversity arises and how natural populations and ecosystems respond to environmental
change. These interactions involve processes by which phenotypes are affected by
or respond to external conditions (e.g., via phenotypic plasticity or natural selection)
as well as processes by which organisms reciprocally interact with the environment
(e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly
dynamic and operate on different hierarchical levels, from genes and phenotypes
to populations, communities, and ecosystems. Therefore, the study of organism-
environment interactions requires integrative approaches and model systems that are
suitable for studies across different hierarchical levels. Here, we introduce the freshwater
isopod Asellus aquaticus, a keystone species and an emerging invertebrate model
system, as a prime candidate to address fundamental questions in ecology and
evolution, and the interfaces therein. We review relevant fields of research that have
used A. aquaticus and draft a set of specific scientific questions that can be answered
using this species. Specifically, we propose that studies on A. aquaticus can help
understanding (i) the influence of host-microbiome interactions on organismal and
ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and
(iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.

Keywords: animal model system, ecosystem function, evolutionary ecology, freshwater ecosystems, integrative
biology, organism-environment interactions, microbiome

INTRODUCTION

Interactions between organisms and their biotic and abiotic environment are central to our
understanding of how biological diversity originates and how it is maintained (Pimentel, 1961;
Kokko and López-Sepulcre, 2007; Hendry, 2017; Lion, 2018; Schwab et al., 2018; Govaert et al.,
2019; Skúlason et al., 2019). Such interactions can be unidirectional or reciprocal, and involve
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dynamic processes operating across different levels of
biological organization, from individuals and populations
to communities and ecosystems. Examples of unidirectional
processes include phenotypic responses to environmental
conditions within an organism’s lifetime (e.g., phenotypic
plasticity; Via and Lande, 1985; West-Eberhard, 2003; Sultan,
2021) and changes in population fitness across generations
(e.g., adaptive evolution; Charlesworth et al., 2017). Examples
of reciprocal interactions include coevolutionary dynamics
between species (e.g., Anderson and May, 1982; Thompson,
1989), associations between hosts and microbial communities
(e.g., microbiomes; Foster et al., 2017; Koskella et al., 2017),
and evolution via organism-mediated modification of abiotic
conditions (e.g., niche construction; Odling-Smee et al., 1996;
Laland et al., 2016). Organism-environment interactions are
inextricably linked with evolutionary processes, but their
complexity and contingency represent a significant challenge
to understanding biodiversity dynamics in natural ecosystems
(Levins and Lewontin, 1985; Sultan, 2015; Hendry, 2017; Lion,
2018; Svensson, 2018; De Meester et al., 2019). Therefore,
understanding how organisms and ecosystems respond to
environmental heterogeneity in space and time remains an
important challengue in evolutionary ecology, and necessitates
studies that investigate organism-environment interactions
across different hierarchical levels.

Much of our current mechanistic understanding of the
emergence and evolution of phenotypic variation comes from
studies using traditional microbe, plant, and animal model
systems, which have provided great insight into how genetic,
developmental, and environmental factors shape phenotypes
(Lenski et al., 1991; Kohler, 1994; Silver, 1995; Dooley and Zon,
2000; Duvick, 2001; Barnett, 2007; Cresko et al., 2007; Fielenbach
and Antebi, 2008; Bedford and Hoekstra, 2015; Hake and Ross-
Ibarra, 2015). A mounting body of work has provided vast
amounts of genomic resources and phenotypic data, as well as
molecular toolkits and analytical methods (e.g., Ramos et al.,
2014; O’Leary et al., 2016; Hunt et al., 2018; Thurmond et al.,
2019). While some of the existing models have considerable
ecological breadth and functional tractability both in laboratory
and field settings (e.g., Skúlason et al., 2019; Duffy et al.,
2021), many of these systems have only limited potential for
integration across multiple scales of inquiry (i.e., from individual
variation to dynamics within populations, communities, and
ecosystems). Such integration is however critical in ecology
and evolution, not only because natural ecosystems consist
of a myriad of species interactions (De Meester et al., 2019;
Travis, 2020) which are subject to adaptive change (Thompson,
1998; Hairston et al., 2005), but also because the hierarchical
structure of natural ecosystems, ranging from the activities of
individuals to ecosystem-level processes, is the relevant object of
study (Wimsatt and Wimsatt, 2007). Thus, the introduction of
model systems that are suitable for studies across hierarchical
levels can enrich our understanding of the contextual nature
of organism-environment interactions (Levins and Lewontin,
1985). Moreover, a wider set of empirical model systems is
needed in order to make headway in integrative studies of
microevolutionary processes in ecologically relevant settings, and

to improve our ability to generalize the underlying processes
(Bolker, 2014; Alfred and Baldwin, 2015).

In line with this, we introduce a model system to address
fundamental questions in ecology and evolution from multiple
perspectives and across scales: the freshwater isopod Asellus
aquaticus, commonly known as aquatic sowbug, water slate, or
waterlouse. This species is widely distributed, phenotypically
variable, and has a very long history in research, ranging
from environmental and ecotoxicological to developmental and
evolutionary studies (Figure 1; e.g., Unwin and Stebbing, 1920;
Kosswig and Kosswig, 1940; Konec et al., 2015; Fuller et al., 2018;
O’Callaghan et al., 2019; Verovnik and Konec, 2019). This sets a
solid, but to this day underexploited, foundation for integrative
studies on organismal-environment interactions within an eco-
evolutionary framework.

We begin our review with an overview of key aspects of
A. aquaticus life history, ecology, and evolution that facilitate
such integrative studies (see section “Asellus aquaticus as a
Model System for Integrative Studies”). Next, we highlight three
major areas of integrative research in ecology and evolution
for which A. aquaticus is particularly well-suited to address
questions across different hierarchical scales (see section “Areas
of Integrative Research Using Asellus aquaticus”). Starting at
the organismal scale, we show how diverse host-microbiome
interactions in A. aquaticus can help us understand host-
microbiome evolution (see Koskella et al., 2017). Specifically,
how host microbiomes, including endosymbionts and epibionts,
can influence organismal performance and fitness, which in turn
may affect ecosystem function. Broadening the scale to then
include how individuals interact with their external biotic and
abiotic environments, we propose that studies on A. aquaticus
can aid in understanding species interactions and ecosystem
processes. Finally, given substantial phenotypic variation and
repeated cases of morphological diversification of this species
(e.g., Verovnik and Konec, 2019), we suggest that integrative
studies on A. aquaticus can shed light on how ecological
conditions and evolutionary forces jointly shape phenotypes.
Throughout the review, we emphasize how studies using this
species can aid in bridging different disciplines (e.g., ecology,
developmental, and evolutionary biology) and levels of biological
organization (e.g., from individuals to ecosystems). We note
that the species has been extensively used in the field of
ecotoxicology (e.g., Bloor, 2011; O’Callaghan et al., 2019), but
our goal here is to highlight, in particular, its use as an eco-
evolutionary model.

ASELLUS AQUATICUS AS A MODEL
SYSTEM FOR INTEGRATIVE STUDIES

Asellus aquaticus (Crustacea, Isopoda, Asellidae; Linnaeus,
1758) is a sexually reproducing arthropod, with several key
features of ecological relevance and methodological benefits
that facilitate establishing it as a model system for integrative
research. Below, we provide a short historical overview and
summarize the key characteristics that make A. aquaticus an
excellent model system.
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FIGURE 1 | Over 150 years of research on and with Asellus aquaticus. The figure summarizes published scientific literature on A. aquaticus. We conducted a
quantitative literature survey with the search tools of Web of Science (WOS; Clarivate analytics) by searching for the term “asellus aquaticus” in six databases (i.e.,
BIOSIS, CABI, FSTA, Medline, WOS Core Collection, and Zoological Records). We found 1235 records, published between 1867 and 2020. (A) The graph shows
the number of publications per year within a given subject area, as designated by WOS. (B) The graph shows the total number of publications assigned to a specific
subject area. The top 10 fields account for 72.58% of all publications, and are indicated by color coding in (A,B) (multiple assignments are possible, summing up to
2845 assignments). The inset in (B) shows a wordcloud with the 100 most used keywords from all A. aquaticus publications. Furthermore, we compiled all records
with relevant information (e.g., title, keywords, research areas, and abstract) to a single file which is available online (Zenodo DOI:
https://zenodo.org/record/5070310#.YV1LQx1S_zU). More details can be found in the Supplementary Material.

Asellus aquaticus has a long history in biological research
(Figure 1). The earliest available scientific publications on
A. aquaticus were written in the late 1800s and focused on
anatomical and physiological features of organismal development
(Dohrn, 1867; Zuelzer, 1907; Wege, 1909). These early studies
included detailed descriptions of its life cycle and its ability to
regenerate appendages (Unwin and Stebbing, 1920; Needham,
1950; Fano et al., 1976; Murphy and Learner, 1982; Marchetti
and Montalenti, 1990). In Box 1, we summarize those and some
other characteristics of A. aquaticus, including core aspects of its
body plan, reproduction, development, and growth. Research on
A. aquaticus shifted, in more recent years, from individual-level

variation to population and ecosystem processes, prompting a
wider use of this species in ecological and evolutionary studies
(Graça et al., 1994; Hargeby et al., 2004; Eroukhmanoff et al.,
2009a; Lürig et al., 2019; Lürig and Matthews, 2021).

Isopoda are known for showing extensive intraspecific
morphological variation and for being successful colonizers of a
wide range of environments (Wetzer, 2002; Wilson, 2008, 2009;
Joca et al., 2015; Lins et al., 2017; Shen et al., 2017; Rudy et al.,
2018; Alves et al., 2019). Though empirical tests are scarce thus far,
some characteristic traits of A. aquaticus, such as biphasic molting
(Unwin and Stebbing, 1920; George, 1972; Marcus, 1990; Balian
et al., 2008), pre-copula formation (Unwin and Stebbing, 1920;
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BOX 1 | Life cycle and reproduction in Asellus aquaticus.

Body plan: Adults are characterized anatomically by the presence of the derived traits distinctive of isopods’ body plan (Wilson, 1991; Balian et al., 2008; Verovnik
et al., 2009; Vick and Blum, 2010). This body plan consists of a dorsoventrally flattened body divided in three tagma. First, the cephalon (ce), which results from the
fusion of the mandibulate head and the first thoracic segment with maxillipeds. Second, the pereon (pe) with seven thoracic segments and walking legs (called
pareopods), which increase in length posteriorly. Third, the pleon (or abdomen), with abdominal limbs (or pleopods) used for respiration, the uropods, and the
gonads. Two of the pleonic segments are free while the others are fused to the telson, forming the pleotelson (pl) (Balian et al., 2008; Verovnik et al., 2009;
Vick and Blum, 2010).

Reproduction: Asellus aquaticus is a gonochoric species (Bertin et al., 2002), with a karyotype consisting of eight homomorphic chromosome pairs (2n = 16) in
both sexes (Montalenti and Rocchi, 1964; Salemaa, 1979; Valentino et al., 1983). It is presumed to have exclusively sexual reproduction (Unwin and Stebbing, 1920;
Ridley and Thompson, 1979). Fertilization is only possible during a short time window (during approximately 24 hours), while the female oviducal openings are free
(i.e., right after she molts the exoskeleton posterior to the fifth thoracic segment). Because of this time-limitation in fertility, copulation is preceded by mate guarding;
a behavioral strategy common in isopods, during which the male guards the female by carrying her until insemination becomes possible (Jormalainen et al., 1994;
Jormalainen, 1998). The duration of this pre-copula (or amplexus) phase is variable (Jormalainen and Merilaita, 1995). After copulation, insemination happens
internally with the eggs in the mother’s brood pouch (bp) (within a marsupium) being fertilized during their transit in the oviduct (Wilson, 1991). Females of A.
aquaticus are females are assumed not to have a true spermatheca, rather a temporary pouch in the oviduct (i.e., seminal receptacle) that can collect sperm and
that regresses after egg-laying without sperm storage (Wilson, 1986). Females can produce a variable number of eggs (between a few dozen to over a hundred;
e.g., Lürig and Matthews, 2021) and large females tend to produce more eggs (Arakelova, 2001).

Development and growth: Embryonic development happens within the mother’s brood pouch and different stages of embryogenesis can be easily detected in the
brood pouch. Initially, eggs are round and surrounded by the chorion (ch) and the vitelline membrane (vi) (Brusca and Iverson, 1985; Wilson, 1991; Martínez and
Defeo, 2006; Wolff, 2009; Vick and Blum, 2010). Early embryogenesis is characterized by the appearance of a dorsal curvature and start of the incorporation of the
yolk (y) into the digestive glands (Vick and Blum, 2010). By late embryogenesis, the yolk is fully incorporated, the appendages are well developed, the embryo (e) has
lengthened along the ventral curvature, and the thoracic segments are evident (Brusca and Iverson, 1985; Wilson, 1991; Martínez and Defeo, 2006; Wolff, 2009;
Vick and Blum, 2010).
In most aspects, A. aquaticus follows the standard development described in isopods (Brusca and Iverson, 1985; Martínez and Defeo, 2006; Wolff, 2009; Vick and
Blum, 2010), though analyses of expression patterns and regulation of several Hox genes (i.e., homeobox genes that specify regions of the animal body plan along
the head-tail axis) have revealed novel patterns of gene expression (e.g., hindgut expression of Abdominal-B gene; Vick and Blum, 2010). This highlights the
potential of this system to study evolutionary changes of segment identity and patterning (Vick and Blum, 2010; Mojaddidi et al., 2018). Embryos develop into small
juveniles inside the marsupium and are released from the brood pouch at approximately 1 mm length. Individuals undergo indeterminate growth with biphasic
molting; a type of ecdysis, characteristic of isopods (George, 1972; Steel, 1982), whereby the posterior and anterior body halves molt sequentially. First the hind-half
(from fifth thoracic segment to posterior-most part of the body) molts, which is followed by hardening of the exoskeleton and subsequent molting of the fore-half
(from fourth thoracic segment to anterior-most part of the body), with a time interval of about 24 hours (Unwin and Stebbing, 1920; George, 1972; Marcus, 1990).
Sexual maturity, is reached at 1.5 to 3 months (depending on environmental conditions) (e.g., Lürig and Matthews, 2021), and at approximately 3–4 mm length.
Growth is continuous after sexual maturation (Steel, 2009). As in other crustaceans, growth is dependent on ecdysis, which involves tissue growth and the synthesis
of a new exoskeleton that eventually replaces the old one during the molt (Carlisle, 1956; Chang and Mykles, 2011).

(Continued)
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BOX 1 | (Continued)

Sexual dimorphism: In males, genitals consist of pairs of testes that are located in the region that binds together the pereon (pe) and the pleon (pl). In females, the
ovaries are paired and lie parallel to the hindgut with oviducal openings on the fifth thoracic segment. When a female is about to produce eggs, the ovaries enlarge
and extend along the length of the thorax (Unwin and Stebbing, 1920). Besides the gonads, sexual dimorphism in A. aquaticus is apparent in males being larger
than females (e.g., Adams et al., 1985) (see section “Sexual Selection and Assortative Mating”) and a few morphological modifications, mostly involved in pre-copula
formation (Bertin et al., 2002). Such morphological modifications involve the pleotelson (pl) and several paraeopods, which differ in shape between males and
females: in males the fourth pair of paraeopods is reduced and curved, which allows them to position and carry the female during mate guarding, and the first pair of
paraeopods bears apophyses that are absent in females (Unwin and Stebbing, 1920; Needham, 1942; Chang, 1986; Brusca and Wilson, 1991; Bertin et al., 2002).
The oostegites of females, which are specialized limbs, enlarge to form the brood pouch in the anterior ventral side of the body, covering the oviducal openings.

Montalentl, 1990), and the development of brood pouches
(Ridley and Thompson, 1979), have been associated with
the evolutionary success of A. aquaticus, and of Isopoda in
general (Hornung, 2011; Horváthová et al., 2017). In general,
A. aquaticus inhabits a variety of natural (and man-made)
aquatic habitats, and is common in lakes, ponds, rivers, and
creeks across Europe and parts of Asia. In Box 2, we summarize
what is known about A. aquaticus phylogeography, including
its phylogenetic relationships, as well as patterns of global
distribution and ecogeographic variation in life histories.
Numerous subspecies of A. aquaticus have been described along
the species’ total geographic range (Sket, 1994; Prevorcnik et al.,
2004; Verovnik et al., 2009). Its broad distribution and diversity
of colonized habitats exposes the species to ecological variation
on local and continental scale, and provides opportunities
for eco-evolutionary and phylogenetic studies across broad
geographic scales.

Along with its wide environmental distribution, several
studies have documented phenotypic variation across different
environments and habitats in A. aquaticus (e.g., Williams, 1962a;
Aston and Milner, 1980; Hargeby et al., 2004; Sworobowicz
et al., 2015; Lürig et al., 2019), indicating its high capacity for
phenotypic change via both phenotypic plasticity and genetic
adaptation (see section “Integration and Future Perspectives”).
Of particular relevance from an eco-evolutionary perspective, are
the repeated cases of ecotype differentiation within Swedish lakes
(Eroukhmanoff et al., 2009a,b) and the evolution of cave-adapted
populations in karstic areas (Kosswig and Kosswig, 1940; Konec
et al., 2015; Mojaddidi et al., 2018). These examples of phenotypic
divergence underscore the potential of this species to contribute
to our understanding of adaptive diversification across different
temporal and spatial scales.

Moreover, A. aquaticus is a key mediator of ecosystem level
processes, being involved in a range of important trophic and
non-trophic interactions in freshwater ecosystems. On the one
hand, A. aquaticus is an efficient detritivore with a broad
spectrum of diets from microbes to leaf litter, and thus, a major
contributor to the recycling of nutrients and biomass (Carpenter
and Lodge, 1986; Graça et al., 1994; Bjelke and Herrmann,
2005). On the other hand, A. aquaticus serves as a prey for
mesopredators (e.g., fish, insects, and waterfowl; Hart and Gill,
1992; Hargeby et al., 2004), and acts as a host to parasites,
endosymbionts, and epibionts (Cook et al., 1998; Dezfuli, 2000;
Zimmer and Bartholmé, 2003).

The broad environmental distribution of A. aquaticus is
considered to stem from its ability to cope with stressful

environmental conditions (e.g., Aston and Milner, 1980; Maltby,
1995). For instance, the species is resilient to high levels of both
organic and chemical pollution (Aston and Milner, 1980; Van
Ginneken et al., 2017, 2019), and is able to bioaccumulate metals
(Elangovan et al., 1999; Rauch and Morrison, 1999) – making it
a well-suited study system also in ecotoxicology. There is a vast
number of insightful studies exemplifying the relevance of this
species for water quality assessment and for ecotoxicology (e.g.,
Rauch and Morrison, 1999; MacNeil et al., 2002; Christensen
et al., 2013; Van Ginneken et al., 2017), as well as a recent
review highlighting A. aquaticus as a model for biomonitoring
(O’Callaghan et al., 2019; Figure 1), but we do not cover these
aspects further here.

Finally, from a methodological point of view, individuals
of A. aquaticus can be collected readily from the wild, and
populations easily established and maintained over multiple
generations in the laboratory at low-cost (e.g., Bloor, 2010, 2011).
Asellus aquaticus is also well-suited for large scale phenotypic
and genetic studies, with several phenotyping and genotyping
tools already available, including a high throughput phenotyping
pipeline (Lürig, 2021), a genome-wide linkage map and hundreds
of genetic markers (Protas et al., 2011; Bakovic et al., 2021). This
combination makes A. aquaticus highly amenable to controlled
laboratory and mesocosm experiments (Rossi and Fano, 1979;
Maltby, 1995; Lürig et al., 2019), as well as to in-depth genetic
and phenotypic studies (e.g., Protas et al., 2011; Lürig et al., 2019,
Bakovic et al., 2021).

AREAS OF INTEGRATIVE RESEARCH
USING ASELLUS AQUATICUS

Microbial Associations
The interactions between a host and its microbiome can have a
substantial impact on organismal function and fitness and can
mediate ecosystem processes (e.g., Douglas, 2014; Fisher et al.,
2017; Hurst, 2017; Koskella et al., 2017; López-García et al.,
2017). Isopods, such as A. aquaticus, are well-suited to studies on
host-microbiome interactions as they bear a diverse community
of bacteria and eukaryotic microorganisms inside and outside
their bodies (Douglas, 1998; Wang et al., 2007; Fraune and Bosch,
2010; Gilbert et al., 2012; Dhanasekaran et al., 2021). A multitude
of complex associations with microorganisms, ranging from
intracellular associations to epibiotic symbiosis, have already
been found or hypothesized to exist in A. aquaticus (Zimmer and
Bartholmé, 2003; Wang et al., 2007; Bredon et al., 2020).
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One of the most important functions provided by the
microbiota is the ability to digest nutritionally challenging
compounds, such as lignocellulose, that A. aquaticus and many
terrestrial isopods, use as a major food source (Zimmer et al.,
2001; Bredon et al., 2019, 2020). Such dietary endosymbiosis
is thought to have been a key element during the radiation of

isopods in terrestrial and freshwater habitats from a common
marine ancestor (Zimmer and Bartholmé, 2003; Wang et al.,
2007; Bouchon et al., 2016; Bredon et al., 2019, 2020).

Besides dietary endosymbiosis, the prevalence of the
reproductive manipulator Wolbachia (Cordaux et al., 2012),
and a diverse community of epibionts with understudied

BOX 2 | Phylogeny and ecogeographical patterns.

Map showing the occurrence of A. aquaticus based on publicly available biodiversity databases (gray dots) and previously published studies (yellow dots and polygons). The
distribution range of the species estimated by Birštejn (1951); Sket (1994), and Verovnik and Konec (2019), is shown with the orange, the green, and the pink polygons,
respectively. This indicates a wide distribution of A. aquaticus throughout Europe and a poorly defined eastern edge of the geographical range (see also Sket, 1994). Note
that the latter is likely due to lack of rigorous surveys rather than true differences in abundance (see Supplementray Table 1). Very few publications report explicitly the
absence of A. aquaticus from specific locations (Williams, 1962b), most occurrence data comes from contributors from western European countries, and there are
discrepancies between studies. It is therefore possible that the species is present in more locations but not yet explored or reported. More details can be found in the
Supplementary Material.

Phylogeny: Asellus aquaticus belongs to the Isopoda (von Reumont et al., 2012; Rota-Stabelli et al., 2013; Misof et al., 2014; Thomas et al., 2020), which contains
more than 10,000 species with extensive intraspecific morphological variation, sexual dimorphism, sequential hermaphroditism, and with a global distribution
(Wetzer, 2002; Wilson, 2008, 2009; Joca et al., 2015; Lins et al., 2017; Shen et al., 2017; Rudy et al., 2018; Alves et al., 2019). Isopoda have successfully colonized
a variety of environments, including deep sea, land, and freshwater (Hessler et al., 1979; Poulin, 1995; Wilson, 2008). The colonization of terrestrial and freshwater
environments is thought to have occurred independently from marine environments (Carefoot and Taylor, 1995; Broly et al., 2013; Lins et al., 2017), but the timing of
this transition to land is uncertain (Lins et al., 2017), due to the scarcity of fossil records for this group (Schmidt, 2008; Broly et al., 2013; Lins et al., 2017).
Reconstructing the phylogenetic relationships of Isopoda has been a major challenge (Wetzer, 2002; Wilson, 2008, 2009; Joca et al., 2015; Lins et al., 2017; Shen
et al., 2017; Rudy et al., 2018; Alves et al., 2019), and vastly different conclusions have been reached depending on whether phylogenetic reconstructions were
based on morphological (e.g., biphasic molting, heart musculature) or molecular data (Zhang et al., 2019).

The combination of different types of data (e.g., mitochondrial and nuclear DNA) and methodological approaches (e.g., maximum likelihood or Bayesian inference;
Lartillot et al., 2007; Crotty et al., 2019) has revealed the Asellota, the clade containing A. aquaticus, as the oldest branch of the Isopoda (Watling, 1981; Wilson,
2009; Yu et al., 2018; Zhang et al., 2019). Interestingly, two inversions of the origin of replication in the mitochondrial genome took place within the Isopoda;

(Continued)
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BOX 2 | (Continued)

one occurred after the Asellota branched off (see Figure 5 in Zhang et al., 2019) and the other one in the highly derived taxon group composed of Cymothoidae and
Corallanidae. Alternatively, and less parsimoniously, the basal isopod taxon could also be the Phreatoicidea (Wetzer, 2002; Kilpert et al., 2012; Zhang et al., 2019).
Given the recency in the progress of elucidating the phylogenetic isopod relationships, the growing insights from fossil records (see e.g., Selden et al., 2016; Schädel
et al., 2020), and the very speciose nature and extreme diversity of this clade, many interesting new insights might still await us, with genomic data increasing rapidly
and becoming available for analyses.

Geographic distribution: Asellus aquaticus occurs throughout large parts of Europe (Sket, 1994; Verovnik et al., 2005; Sworobowicz et al., 2015), although its
local distribution can be distinctively patchy (Williams, 1962b; Hynes and Williams, 1965; Wolff, 1973). It is hypothesized that A. aquaticus arrived in Europe around 8
to 12 million years ago through the brackish Paratethys basin (Sket, 1994; Verovnik et al., 2005). The species’ current distribution is assumed to reflect the last ice
age, where the Appennine and the Balkan Peninsula served as major glacial refugia for many species in Europe (Hewitt, 1999, 2000). Asellus aquaticus probably
diversified in such southern refugia before subsequently recolonizing the northern parts of Europe when the ice retreated (Verovnik et al., 2005; Sworobowicz et al.,
2015). Recently, it was shown that A. aquaticus might have also survived in the extensive lacustrine systems present along the glacial margins in a vast network of
glacial microrefugia across Europe (Sworobowicz et al., 2020).

It has also been suggested that dispersal of A. aquaticus may have been influenced by human activity (Williams, 1962b; Verovnik et al., 2005; Sworobowicz et al.,
2020), though empirical data supporting this view is still scarce. Genetic diversity is maintained by secondary contact of different phylogroups or lineages (Verovnik
et al., 2005), and is highest around the Adriatic Sea, the Alps, and the south-eastern Balkan Peninsula, whereas central and north-eastern Europe seem to be
dominated by populations with low genetic diversity (Sworobowicz et al., 2015). Further studies exploring the distribution patterns of this species in more detail could
shed light onto its current geographical range and dispersal patterns. This may be particularly relevant given that the wide geographic distribution of A. aquaticus
likely reflects a capacity to reach (via dispersal) and to tolerate (or adapt to) a broad range of environments (e.g., high resistance to desiccation, pollution, and
changing temperatures; e.g., Aston and Milner, 1980; Weltje, 2006; Konec et al., 2016; O’Callaghan et al., 2019).

Ecogeographic variation in life histories: Studies in natural populations from different geographical locations show that A. aquaticus commonly has two
complete generations per year (e.g., in England; Unwin and Stebbing, 1920; Adcock, 1979; Ridley and Thompson, 1979; in Norway; Økland, 1978). These give rise
to spring and autumn cohorts (Unwin and Stebbing, 1920; Adcock, 1979; Ridley and Thompson, 1979), which may encounter different selective environments, as
shown in other species (e.g., Leys et al., 2017). The first cohort develops from embryo to maturity entirely during the favorable growing season (i.e., summer
months), whereas second cohort (overwintering generation) develop rapidly during the first weeks of life, reach sexual maturity, and then enter a state of reproductive
stasis (or reproductive diapause) (Brasiello and Tadini, 1969; Adcock, 1979; Steel, 2009).

Despite the aforementioned commonalities across geographically distinct locations, A. aquaticus also shows substantial geographic and seasonal variation in
breeding patterns and life history characteristics, potentially reflecting adaptation (or plasticity) to differing environmental factors (Anderson, 1969; Økland, 1978;
Murphy and Learner, 1982). The length of the breeding season can be highly variable (e.g., 5–11 months; Aston and Milner, 1980), with northern populations having
shorter breeding seasons (Anderson, 1969) and periods of sexual inactivity, or reproductive diapause (Fano et al., 1976; Migliore et al., 1982). Such geographic
variation in life cycles, including the reproductive diapause, has been proposed to be adaptive: in several northern locations faster development (than in southern
locations) allows individuals to exploit resources following reproductive stasis (in spring and summer) (Fano et al., 1976; Vitagliano et al., 1994).

functions (Fontaneto and Ambrosini, 2010), make isopods
promising study systems for host-microbiome interactions. In
general, microbes may broaden host environmental tolerance
and thereby allow hosts to have wide dietary niches, inhabit
diverse abiotic environments, and cope with a variety of
environmental stressors (Henry et al., 2021). Although little
studied thus far in A. aquaticus, it seems possible that its
broad environmental tolerance is, in part, achieved via host-
microbiome interactions. Furthermore, dietary symbionts in
A. aquaticus have the potential to directly mediate the role of their
detritivore hosts in the ecosystems, which makes A. aquaticus,
together with terrestrial isopods (Bouchon et al., 2016) also
well-suited to explore the effects of symbiotic associations
on ecosystem functioning (see section “Integration and
Future Perspectives”).

Microbial Communities and Diet
The ability of isopods, including A. aquaticus, to break down
cellulose and lignins (i.e., lignocellulose) from leaf litter is
considered a crucial adaptation during its past colonization of
freshwater habitats from marine ancestors (Zimmer et al., 2001,
2002a; Zimmer and Bartholmé, 2003). While marine isopods
often feed on nutritious and easily digestible food sources, such
as algae (Kennish and Williams, 1997; Wahlström et al., 2020),

detritivores in freshwater ecosystems are often confronted with
leaf litter and detritus of allochthonous origin (Grieve and Lau,
2018). This detritus typically has low nutrient levels and high
concentrations of lignocellulose, phenolics, and other recalcitrant
components of terrestrial plants (Webster and Benfield, 1986;
Kritzberg et al., 2004; Cross et al., 2005; Solomon et al.,
2008). Since most marine ancestors do not have the ability to
degrade such compounds (Ray and Julian, 1952; Zimmer et al.,
2001; Wang et al., 2007), it is hypothesized that the successful
colonization of freshwater environments was facilitated by the
adoption of gut microbial communities that produce enzymes for
the digestion of recalcitrant plant detritus (Zimmer et al., 2001,
2002a; Bredon et al., 2019, 2020).

Asellus aquaticus is known to harbor bacterial endosymbionts
in two digestive structures: the hepatopancreas (also called
midgut gland; Wang et al., 2007; Bouchon et al., 2016;
Bredon et al., 2019), a multilobed gland that is functionally
analogous to the liver and pancreas of higher organisms (Brunet
et al., 1994), and the hindgut (Zimmer and Bartholmé, 2003).
The community of bacterial endosymbionts in the midgut
gland produces digestive enzymes such as phenoloxidase and
cellulase, allowing A. aquaticus to feed directly on recalcitrant
allochthonous substrates (Robson, 1979; Zimmer and Bartholmé,
2003; Hasu et al., 2008; Bredon et al., 2020). Other crustacean
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detritivores (e.g., the amphipod Gammarus pulex; Zimmer and
Bartholmé, 2003), and various terrestrial isopods (Wang et al.,
2007; Kostanjšek et al., 2010; Bredon et al., 2020) also resort to
enzymatic breakdown of leaf litter, but enzymes in these other
species are produced by both host (Kostanjšek et al., 2010) and
gut microbiota (Bredon et al., 2020). In contrast, A. aquaticus
seems to mostly rely on its gut microbiome when digesting plant
material of terrestrial origin (Bredon et al., 2020), providing
evidence for a strong symbiotic relationship.

Similarly to other detritivores, A. aquaticus also relies on
environmental bacteria for nutritional purposes via microbial
establishment, i.e., microbial colonization of the substrate, which
is thought to provide several benefits (Gessner et al., 1999). On
the one hand, this microbial colonization results in a change of
the physical and chemical status of terrestrial substrates (Gessner
et al., 1999), preparing them for consumption by detritivores
through enzymatic catalysis and leaf fragmentation (Bärlocher
and Porter, 1986; Bärlocher, 1992). On the other hand, the algae,
bacteria, and fungi colonizing the substrate and forming an
extracellular polymeric substance matrix (e.g., biofilm; Flemming
et al., 2007), acts directly as an important food source. Although
A. aquaticus can feed on fresh plant material (e.g., macrophytes
or filamentous algae; Marcus et al., 1978), it seems to prefer
(and also grow faster on) substrates colonized by microbiota
(Marcus et al., 1978; Rossi, 1985; Graça et al., 1993a; Bohmann,
2005). The optimal diet of A. aquaticus is likely to be a complex
mix of components. For instance, algal compounds seem to be
needed for optimal development, likely due to a specific fatty
acid composition (Grieve and Lau, 2018). In addition, there
is compelling evidence that A. aquaticus prefers fungal food
sources, and even specific species of fungi, over other parts of
the biofilm (Rossi and Fano, 1979; Graça et al., 1993a), possibly
because higher growth rates can be sustained when feeding on
phosphorus and nitrogen-rich fungi (Rossi and Fano, 1979; Graça
et al., 1993b; Lürig and Matthews, 2021).

Microbial Reproductive Manipulators
A variety of microorganisms are known to affect reproduction
and sex determination in arthropods (Stouthamer et al., 1990;
Breeuwer and Jacobs, 1996; Groenenboom and Hogeweg, 2002),
including isopods (e.g., Chebbi et al., 2019). Of these, the best
studied is the intracellular bacterium Wolbachia, which may
occur in as many as half of all arthropod species (Cowdry, 1923;
Hilgenboecker et al., 2008; Weinert et al., 2015). Wolbachia can
have a major impact on host fitness (Werren, 1997; Stouthamer
et al., 1999; Werren et al., 2008; Becking et al., 2019) by
for instance, protecting against viruses (Teixeira et al., 2008),
providing nutrients (Brownlie et al., 2009) and, notably, by
influencing reproduction and life-histories (Dobson et al., 2002;
Cao et al., 2019). Being a maternally transmitted symbiont,
Wolbachia has evolved mechanisms to promote its spread, either
by inducing cytoplasmic incompatibility or by skewing offspring
sex ratios toward females via feminization, male killing, or
the induction of parthenogenesis (O’Neill et al., 1997). In the
terrestrial isopods Armadillidium nasatum (Becking et al., 2019)
and A. vulgare (Chebbi et al., 2019), Wolbachia is thought to

have influenced sex chromosome evolution and cytoplasmic
sex determination.

Asellus aquaticus is known to carry Wolbachia (Bouchon
et al., 1998), and different lines of evidence suggest that sex
determination in this species may be influenced by both sex
determining genes and maternally transmitted factors (Vitagliano
et al., 1994), such as Wolbachia. On the one hand, the karyotype
of A. aquaticus consists of eight homomorphic chromosome
pairs (2n = 16) in both sexes (Montalenti and Rocchi, 1964;
Salemaa, 1979; Valentino et al., 1983). However, the presence
of a difference in heterochromatin areas for one chromosome
pair in males from an Italian population has been taken as an
indication for an incipient sex chromosome differentiation in
A. aquaticus (Rocchi et al., 1984; Volpi et al., 1992). On the other
hand, analyses of hybrid offspring between populations differing
in male to female ratios indicate that sex ratio in A. aquaticus
can be highly dependant on the origin of the mother (Vitagliano
et al., 1994). This potentially indicates a role for a maternally
transmitted factor, such as Wolbachia, in sex determination
and population sex ratios (e.g., Charlat et al., 2003). Empirical
evidence suggests that switches from Wolbachia-driven to genetic
sex determination may take place in different taxa (Charlat
et al., 2003), including terrestrial isopods (O’Neill et al., 1997).
Given these observations, and known Wolbachia effects in
other arthropods, including isopods, A. aquaticus is an excellent
candidate to evaluate how interactions between host genetics
and reproductive symbionts influence sex determination, and to
provide insight into the eco-evolutionary implications of these
interacting processes.

Epibionts
In addition to the various internal microbes referred to above,
aquatic crustaceans, including A. aquaticus, also host specialized
epibiotic communities (e.g., bacteria, diatoms, protozoa, and
rotifers) on their exoskeleton (Cook et al., 1998; Fontaneto
and Ambrosini, 2010). While it is generally assumed that
the only benefit is phoretic (i.e., mode of transportation
for the epibiont; May, 1989), it has also been argued that
certain rotifer species may feed on host-derived material
(e.g., feces or bacteria; Beauchamp, 1932). Studies in pelagic
species, such as copepods and cladocerans, suggest that surface
colonization by protozoans may also be associated with predator
avoidance (Steffan, 1967; Thiery and Cazaubon, 1992), increased
oxygen uptake (Steffan, 1967; Thiery and Cazaubon, 1992),
or greater intake of suspended matter (Green, 1974). The
extensive colonization of certain body regions or organs,
such as the gills in A. aquaticus, could also be harmful
and potentially indicate a parasitic association (Cook et al.,
1998). However, despite epibionts being common in aquatic
invertebrates, we still know little about the nature of these
colonizations and the impact they may have on host performance
(Cook et al., 1998).

Interestingly, in A. aquaticus the composition of epibiotic
communities can vary within (e.g., between dorsal and ventral
body parts) and across individuals, as well as between populations
(Cook et al., 1998). Asellus aquaticus may be a particularly
suitable system to investigate the spatial and temporal dynamics
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of epibionts communities on their host. The bi-phasic sequential
molting of A. aquaticus (Box 1) will induce time-restricted
dispersal and recolonization events for epibionts (Cook et al.,
1998) that could be easily traced. Moreover, organisms with
bi-phasic molting never shed the entire exoskeleton at once,
which may allow for more stable associations between hosts and
epibionts compared to other arthropods. Further work in this
direction could help elucidate the ecological and evolutionary
significance of epibiont–host organism interactions.

Biotic Interactions
Interactions between organisms and their environment can
influence organismal performance and evolutionary trajectories
and, when involving keystone species such as A. aquaticus,
have overreaching consequences for the entire food web or
ecosystem (e.g., Visser et al., 2012). Classic examples in different
taxa illustrate the extent to which competitive, predator-prey,
and host-parasite interactions can influence ecosystem function
(Levine, 1976; Berryman, 1992; Gandon and Van Zandt, 1998;
Abrams, 2000; MacColl, 2011), such as, for instance, through
trophic cascades (Best and Stachowicz, 2012; Walsh et al.,
2016).

Asellus aquaticus is relevant for ecosystem functioning due
to its role in organic matter processing and nutrient cycling
within aquatic ecosystems, as well as in the aquatic-terrestrial
interphase arising from its detritivory (i.e., it typically feeds on
leaf litter fallen from trees) (Carpenter and Lodge, 1986; Graça
et al., 1994; Bjelke and Herrmann, 2005). Moreover, A. aquaticus
is an important component of aquatic food webs, as it serves as a
prey for mesopredators (e.g., Hart and Gill, 1992; Hargeby et al.,
2004) and as a host for trophically transmitted parasites (e.g.,
Dezfuli, 2000). However, and despite a long history of research
on A. aquaticus, surprisingly little is known about the extent to
which interactions between these isopods and their environment
link ecosystem and evolutionary processes (i.e., eco-evolutionary
dynamics) (Hairston et al., 2005, Matthews et al., 2011; Schoener,
2011; Miner et al., 2012; Reznick et al., 2019). Given the high
degree of phenotypic variation (e.g., Hargeby et al., 2005; Lürig
et al., 2019), and its role as a keystone species, A. aquaticus is
a well-suited model for evolutionary ecosystem studies, such as
those related to resource use and biotic interactions.

Detritivory and Competition
Among and within species variation in the ability to tolerate
suboptimal environmental conditions and to utilize diverse
diets can be major determinants of species distribution
and competitive exclusion (Hoffmann and Hercus, 2000;
Liancourt et al., 2005; de Araújo et al., 2014). Competitive
interactions may be particularly relevant when considering
keystone species, such as A. aquaticus, as they have the
potential to influence key ecosystem processes (Lindeman, 1991;
Bianchi, 2020). Benthic detritivores, in general, play a central
role for the functioning of ecosystems aquatic environments
with high productivity (Jeppesen et al., 1998; Bjelke and
Herrmann, 2005; Adey and Loveland, 2007; Kenna et al., 2017).
Therefore, differential environmental tolerances and competitive
exclusion between co-existing benthic detritivore species can

have important ecosystem level effects (Wallace and Webster,
1996; Little et al., 2019).

Asellus aquaticus seems to be a strong competitor to more
environmentally sensitive taxa: it is resilient to both low
oxygen levels (Edwards and Learner, 1960; Maltby, 1995; Bjelke,
2005) and high levels of unionized ammonia (Maltby, 1995),
which presumably allows A. aquaticus to occupy a broader
range of oligo- and eutrophic benthic microhabitats than some
other detritivore taxa (e.g., Hargeby, 1990a; Graça et al., 1994;
Bjelke, 2005). It has even been suggested that interspecific
differences in physical and chemical tolerances may explain
the non-overlapping distribution patterns between A. aquaticus
and G. pulex (Costantini et al., 2005), a common gammarid
amphipod that competes with A. aquaticus for space and for
detrital resources (Åbjörnsson et al., 2000; Van den Brink et al.,
2017). Specifically, A. aquaticus tolerates pollution better than
does G. pulex, which may explain why it often dominates in
polluted areas (Whitehurst and Lindsey, 1990; Whitehurst, 1991).

Another aspect that presumably makes A. aquaticus a strong
competitor in benthic detrital food chains is its ability to use a
broad range of dietary resources (Marcus et al., 1978; Willoughby
and Marcus, 1979; Graça et al., 1993b; Lürig and Matthews, 2021).
Asellus aquaticus is, in fact, able to use diets that important
competitors cannot utilize. It is possible that a specific gut
microbial community facilitates the digestion of epiphytic fungi
and bacteria (see also section “Microbial Communities and
Diet”), which then allows A. aquaticus to harness dietary sources
that are not available to other benthic detritivores. The ability
to digest fungi may be especially beneficial because of their high
nutritional value and near optimal elemental ratios (i.e., low C:P
and C:N ratios; Elser et al., 2000), which in turn, can positively
affect growth and pose a competitive advantage for A. aquaticus.

Given the aforementioned specific trophic features, and the
possibility for diet manipulations, A. aquaticus is amenable to
tackling a broad range of food web related topics. Interesting
and ecologically relevant questions include aspects related to
differential resource base (e.g., biofilm versus leaf litter; Grieve
and Lau, 2018; Santschi et al., 2018; Gossiaux et al., 2020)
and to how species-specific responses to diverse pollutants (e.g.,
pesticides versus fungicides) influence food webs (Burdon et al.,
2016; Feckler et al., 2016; Stamm et al., 2016).

Predator-Prey Interactions
Benthic species, such as A. aquaticus, are a key food source
for mesopredators in aquatic ecosystems and disturbances in
their populations can have far-reaching consequences (Rask and
Hiisivuori, 1985; Brooks et al., 2009), and strongly influence
nutrient cycling across food webs (Schmitz et al., 2018). Hence,
understanding predator-prey interactions of keystone species
can provide core insight into the role of biotic interactions
in nature. Asellus aquaticus is an important component of
aquatic food webs (Murphy and Learner, 1982; Hart and Ison,
1991; Graça et al., 1994; Persson and Eklöv, 1995) because
it is a prey species to different invertebrate (e.g., insects;
Thompson, 1978; Cockrell, 1984; Brooks et al., 2009) and
vertebrate predators (e.g., fish, Rask and Hiisivuori, 1985;
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Hart and Gill, 1992; Salvanes and Hart, 1998; Harris et al., 2011).
Locally, isopods can make up a very large proportion of a
predator’s diet (up to 70%) (Rask and Hiisivuori, 1985) and can
therefore be a main factor in determining the occurrence and
abundance of predator species (Herrmann, 1984).

Predation can also be a major evolutionary driver behind
trait divergence, from behavior to morphology and life histories
(Johnson and Belk, 2020). Predator avoidance mechanisms
range from behavioral avoidance to cryptic coloration and are
sometimes highly dependent on the type of microhabitat (e.g.,
with or without shelter) and on how individual phenotypes
match the microhabitat (e.g., via crypsis) (e.g., Edelaar et al.,
2008, 2017; Ruxton et al., 2019; van Bergen and Beldade,
2019). For organisms such as A. aquaticus that typically hide in
vegetation, macrophyte patches or leaf litter deposits can offer
both nutritional resources and shelter from predation either
via direct structural effect or via cryptic background matching
(Hargeby et al., 2005; Warfe et al., 2008; Kovalenko et al., 2012).
Intriguingly, A. aquaticus has evolved cryptic pigmentation
presumably as a consequence of visual predation, whereby close
matching of isopod body color and microhabitat background
color has been found (Hargeby et al., 2004, 2005; Lürig et al.,
2019) (see section “Ecotype Divergence Within Lakes” and
Figure 2).

There is increasing evidence for a tight relationship between
behavior, morphology, and performance (Garland and Losos,
1994), as well as for variation in that relationship across
environments (Broom and Ruxton, 2005; Lürig et al., 2016).
However, the extent to which variation in that relationship, in
turn, influences ecoysytem function, is still poorly understood.
Furthermore, anti-predator responses can come at a cost to other
performance traits, which may also influence ecosystem function.
For instance, in A. aquaticus, predator presence decreases feeding
efficiency (Åbjörnsson et al., 2000; Calizza et al., 2013) and
thus, it can indirectly affect nutrient cycling and decomposition
of organic material. Given the potential for predator-prey
interactions and phenotypic habitat matching in A. aquaticus,
this species is suitable for investigating the impact of differential
predation pressures on ecosystem function.

Host-Parasite Interactions
Another type of biotic interaction in A. aquaticus that has the
potential to strongly influence ecosystem function is that of
host-parasite interactions involving multiple trophic levels. Host-
parasite interactions can influence population performance and
dynamics at different scales (e.g., Penczykowski et al., 2016) from
within-host (e.g., direct effect of parasites on host survival or
reproduction) up to community-level effects (e.g., impact on
the structure of the communities of their hosts) (Dobson and
Hudson, 1986; Minchella and Scott, 1991). This is especially true
in the case of transmission of parasites across two trophic levels
via keystone species, such as A. aquaticus and fish.

Host-parasite interactions that have been best studied in
A. aquaticus are those between the isopod and acanthocephalan
parasites, including Acanthocephalus lucii, A. anguillae, and
A. balkanicus (Brattey, 1983; Dezfuli, 2000; Amin et al., 2019).
Species of acanthocephalans that frequently and specifically

infect A. aquaticus have different species of fish – for example,
perch, stickleback and/or eels – as their subsequent and final
host (Dezfuli et al., 1994; Dezfuli, 2000; Lyndon and Kennedy,
2001; Hasu et al., 2007). The adult acantocephalan worms
reside and reproduce in the fish intestine and transmission
to A. aquaticus occurs when the isopod ingests the parasite’s
eggs that have been released to the environment via fish feces.
Once inside the isopod host, the eggs hatch, penetrate the
gut wall, and the parasite subsequently develops inside the
host body cavity (Dezfuli, 2000). Intriguingly, these trophically
transmitted parasites are known for host manipulation, such
as the induction of behavioral changes (e.g., infected isopods
hide less than uninfected isopods; Benesh et al., 2008;
Seppälä et al., 2008), increased body size, and/or changes in
pigmentation (Brattey, 1983; Hasu et al., 2007; Benesh et al.,
2009; see Figure 2). These parasites can also castrate female
isopods by inhibiting secondary sexual development (Brattey,
1983; Dezfuli et al., 1994). While little is known about the
consequences of parasitism on individuals and populations
of A. aquaticus, the transmission of parasites across trophic
levels, appeals to using this species in studies exploring
ecosystem consequences and eco-evolutionary feedbacks of host-
parasite interactions.

Phenotypic Divergence
Asellus aquaticus provides some fascinating examples of
phenotypic variation across different temporal (i.e., within and
between generations) and spatial (e.g., continental versus local)
scales, making it a well-suited system to study the evolution of
biological diversity. On a continental scale, multiple subspecies
have formed throughout the species range (Box 2) and cave
forms have evolved in multiple karstic areas in Europe (e.g.,
Konec et al., 2015; Mojaddidi et al., 2018). The latter has led
to subterranean phenotypic adaptation and to the formation
of troglomorphic subspecies (e.g., Kosswig and Kosswig,
1940; Turk-Prevorčnik and Blejec, 1998). On a regional scale,
A. aquaticus has undergone repeated ecotype differentiation
within lakes (Eroukhmanoff et al., 2009a,b), with divergence
having been associated to both genetic (e.g., Bakovic et al., 2021)
and plastic effects (Karlsson et al., 2010). Locally, A. aquaticus
shows evidence of assortative mating (e.g., Ridley and Thompson,
1979; Adams et al., 1985), which has the potential to contribute
to sexual selection and reproductive isolation (Jiang et al., 2013).

Available evidence indicates that the extensive phenotypic
variation in A. aquaticus is driven, at least in part, by
natural selection, offering an opportunity to explore the
relationship between environmental variation and adaptive
diversification (Nosil, 2012). In general, when environmental
variation is spatially structured and gene flow is restricted,
natural selection can promote local adaptation (Kawecki and
Ebert, 2004; Hereford, 2009), whilst high spatio-temporal
environmental variation can favor phenotypic plasticity (Via
and Lande, 1985; Schlichting and Pigliucci, 1998; DeWitt and
Scheiner, 2004; Lafuente and Beldade, 2019). Ultimately, the
relationship between local adaptation and plasticity depends on
the magnitude of the environmental differences and on the
potential for dispersal and gene flow (Sultan and Spencer, 2002;
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FIGURE 2 | Determinants of body pigmentation in Asellus aquaticus. (A) Images show differences in pigmentation between individuals of A. aquaticus. Pigmentation
in this species is a highly variable trait, ranging from light to dark brown in surface water forms (e.g., Hargeby et al., 2004, 2005; Lürig et al., 2019) to nearly colorless
cave forms (Protas et al., 2011). Similar to other isopods, integumental pigmentation is mainly composed of the ommochromes xanthommatin and ommatin, which
are deposited inside specialized skin cells (Needham, 1970). (B) Image showing two individuals of A. aquaticus with visible Zenker cells, which are a specialized cell
type homologous to the tegumental glands of terrestrial isopods (Ter-Poghossian, 1909; Gorvett, 2009). In A. aquaticus, the Zenker cells form conspicuous
fluorescent yellow stripes along thoracic and abdominal segments (Zimmer et al., 2002b). Zenker cells help in the storage of metabolic waste products, such as uric
acid, which appears in large amounts in A. aquaticus (Lockwood, 1959). The storage of uric acid, along with increased pigmentation, has been proposed as a
mechanism to avoid cell toxicity (Linzen, 1974). Furthermore, the ecological relevance of the conspicuousness produced by Zenker cells has been associated with
predation (Zimmer et al., 2002b), in that the fluorescence emitted by Zenker cells causes intraspecific variation in external patterns, affecting individual visibility, and
influencing predation risk (Zimmer et al., 2002b). (C) Image of individuals of A. aquaticus infected with Acanthocephalan parasites, which have disruptive effects on
the pigmentation patterns (Oetinger and Nickol, 1981). Infected individuals generally show darker pigmentation in the posterior-most region of the body (Needham,
1974; Dezfuli et al., 1994), making them more conspicuous (Dezfuli et al., 1994), and potentially influencing trophic transmission to the next host (i.e., different
species of freshwater fish) (e.g., Hasu et al., 2007; Benesh et al., 2009).

Garant et al., 2007; Ghalambor et al., 2007; Räsänen and
Hendry, 2008). The broad range of natural and man-made
environments that the species inhabits, and the different temporal
and spatial scales on which phenotypic variation occurs, make
A. aquaticus well-suited for increasing our understanding of
adaptive divergence across different scales.

Surface-Cave Divergence
The ability A. aquaticus to adapt to a broad range of conditions
is particularly striking in surface versus cave environments in
different parts of Europe (Kosswig and Kosswig, 1940; Sket,
1994; Turk et al., 1996; Turk-Prevorčnik and Blejec, 1998;
Verovnik et al., 2004, reviewed in Verovnik and Konec, 2019).
Generally, cave living organisms often show a pattern of multiple
independently evolved populations (e.g., Bradic et al., 2013), and
thus represent great systems to study mechanisms of adaptation
and the prevalence (or lack thereof) of convergent and parallel
evolution (e.g., Jeffery, 2009; Liu et al., 2017). Studies on surface-
cave divergence of A. aquaticus have thus far provided the
most extensive and detailed genetic and developmental analyses
(and resources) for this species, which has resulted in extensive
efforts to establish this species as an invertebrate model for
studies of cave evolution (Protas et al., 2011; Konec et al.,

2015; Mojaddidi et al., 2018; Verovnik and Konec, 2019).
Based on molecular genetic analyses, the colonization of cave
habitats happened independently in several locations, suggesting
parallel or convergent evolution in subterranean populations
(Konec et al., 2015). Closely related (and potentially ancestral)
surface populations are still existent in many locations, and cave
and surface forms can interbreed in captivity, which suggests
incomplete reproductive isolation, and facilitates genetic and
phenotypic analyses (Mojaddidi et al., 2018; Re et al., 2018).

As in many other cave-adapted taxa (e.g., Yoshizawa
et al., 2012; Soares and Niemiller, 2013), cave populations
of A. aquaticus show reduced or absent ommatidia (i.e.,
optical units that make up the compound eye of arthropods),
depigmentation, elaborated sensory structures, and elongation
of some appendages (Turk et al., 1996; Prevorcnik et al., 2004;
Konec et al., 2015). Genetic mapping analyses have revealed
that pigmentation (Figure 2) and eye loss are under the control
of a few genes of large effect, with closely related traits (e.g.,
eye loss and eye reduction) mapping to distinct regions (Protas
et al., 2011). Interestingly, the same genomic regions (and even
same genes) underlie the convergent loss of pigmentation in
two different cave populations of A. aquaticus (Pivka and Rak
Channels in Slovenia; Re et al., 2018), potentially indicating
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that evolutionary change may have happened via fixation of
standing genetic variation from an ancestral surface lineage
(Re et al., 2018).

In contrast to their surface water ancestors, cave-living
A. aquaticus show physiological differences involving
energy saving mechanisms, such as lower locomotor and
metabolic activity (Jemec et al., 2017), as well as differences in
energy biomarkers (Zidar et al., 2018). Similar physiological
specializations have been described for other cave crustaceans
(Hervant et al., 1997, 1999; Simcic et al., 2005). The reduced
locomotion of cave-dwelling A. aquaticus has been taken as
an indication that cave adaptation is primarily driven by the
increased stability of cave environments (Jemec et al., 2017;
Verovnik and Konec, 2019). However, phenotypic divergence
in morphometric traits, which appears to have happened
independently of ecological parameters (e.g., nutrient availability
or habitat type; Konec et al., 2015), has been taken as evidence for
a role of darkness as a main selective agent (Culver et al., 2010).
Further work on A. aquaticus could help understanding how
different environmental factors (and their interactions) influence
phenotypic divergence in cave animals (Culver et al., 2010; Pipan
and Culver, 2012; Soares and Niemiller, 2013; Gross et al., 2014).

Many of the morphological differences (e.g., pigmentation,
eye size, and antennal article number) between cave and surface
forms of A. aquaticus arise during embryonic development
(Mojaddidi et al., 2018) and involve the differential expression of
genes with diverse putative functions, such as phototransduction,
photoreception, and eye development (Gross et al., 2019).
Transcriptomic analyses of cave (versus surface) individuals also
revealed allele-specific gene expression (Stahl et al., 2015; Gross
et al., 2019), suggesting that cis-regulatory changes in gene
expression may be responsible for phenotypic differences. Since
cis-regulatory changes are known to constitute an important
part of the genetic basis of adaptation (see Wray, 2007), A.
aquaticus could provide insight into the contribution of cis-
regulatory changes to cave adaptation. Moreover, studies using
this species in comparison with other taxa, could help to
elucidate the extent to which cave related traits are under
the control of the same or of different genes in independent
phylogenetic lineages.

Ecotype Divergence Within Lakes
Among the best-studied cases of phenotypic and ecological
differentiation in A. aquaticus is the intralacustrine divergence
into distinct ecotypes, which provides an excellent opportunity
to study microevolutionary responses in both space and time. In
several different lakes in Sweden, A. aquaticus has – over the last
two decades – diverged phenotypically into two different ecotypes
that associate with different vegetation types (Eroukhmanoff and
Svensson, 2009, 2011; Harris et al., 2011): the ancestral reed
(Phragmites australis) habitat and the novel stonewort (Chara
tomentosum) habitat (Hargeby et al., 2004, 2005; Eroukhmanoff
et al., 2009a). Phenotypic divergence in morphology and behavior
in A. aquaticus is thought to have happened as the result of
differences in visual predation pressure; invertebrate predators
are most prevalent in reed habitats, while fish dominate the
stonewort habitat (Hargeby et al., 2004; Eroukhmanoff and

Svensson, 2009, 2011). These ecological conditions have favored
crypsis in stoneworts, with isopods having smaller bodies, lighter
pigmentation, and being behaviorally more cautious than those
inhabiting reed habitats (Hargeby et al., 2004; Eroukhmanoff and
Svensson, 2009, 2011).

Furthermore, mate choice experiments between individuals
from the two ecotypes indicate that the combined effects of
natural selection and size-assortative mating may have promoted
morphological differentiation (Hargeby and Erlandsson, 2006).
In addition to color polymorphism and anti-predator traits,
demographic parameters also differ between the reed and
stonewort ecotypes, with population densities being generally
lower in the reed than in the stonewort habitat (Karlsson et al.,
2010). These differences in demography have been associated
with the differences in sexual behavior whereby the stonewort
ecotype shows lower propensity to initiate precopula than the
ancestral reed ecotype (Karlsson et al., 2010). At the same time,
mating propensity is plastic (i.e., dependent on sex ratio) in the
novel stonewort ecotype but not in the ancestral reed ecotype
(Karlsson et al., 2010), suggesting that variation in mate choice
(and its plasticity) may have contributed to ecotype divergence
(Karlsson et al., 2010).

Anti-predator specializations have been found in several
geographically separate and genetically independent stonewort-
inhabiting populations in Sweden, indicative of parallel evolution
(Hargeby et al., 2005; Eroukhmanoff and Svensson, 2009;
Eroukhmanoff et al., 2009a). This divergence is, at least
partly, under genetic control, such as seen for divergence in
pigmentation between ecotypes (Hargeby et al., 2004). Molecular
data suggests that A. aquaticus populations adapted to stonewort
habitats have emerged independently and repeatedly, rather than
emerged in one of the lakes and then subsequently dispersed to
the others (Eroukhmanoff et al., 2009a).

Similar to the threespine stickleback model of ecological
speciation (reviewed in Hendry et al., 2009) and other freshwater
fish (Seehausen and Wagner, 2014; Skúlason et al., 2019),
A. aquaticus occurs at wide geographic scales and in areas
with different degrees of connectivity (e.g., across lakes, lake-
stream, surface water-cave, and within lakes) providing the
opportunity for future avenues of research on selection-gene
flow balance and the speciation continuum (Nosil, 2012). In this
vain, A. aquaticus constitutes an excellent invertebrate model
system to study the mechanisms underlying parallel evolution in
multiple independently evolved populations of a single species
(Losos et al., 1998; Schluter et al., 2004; Boughman et al.,
2005). Intralacustrine divergence further provides potential for
understanding the interplay between natural selection (e.g., via
vegetation and predation) and gene flow (e.g., effect of geographic
distance and habitat suitability on potential for dispersal within
ecosystems) (Richardson et al., 2014).

Sexual Selection and Assortative Mating
Assortative mating, whereby individuals with particular
phenotypes mate with one another in a non-random fashion, is
a main contributor to sexual selection (Jiang et al., 2013; Kopp
et al., 2018), and has the potential to drive reproductive isolation
(Lande, 1981; Panhuis et al., 2001; Ritchie, 2007). One of the most

Frontiers in Ecology and Evolution | www.frontiersin.org 12 November 2021 | Volume 9 | Article 748212

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-748212 October 30, 2021 Time: 18:29 # 13

Lafuente et al. Integrative Research With Asellus aquaticus

prevalent forms of assortative mating in many taxa, including
A. aquaticus, is that with respect to size (i.e., size-assortative
mating) (Harari et al., 1999; Shine et al., 2001; Jiang et al., 2013;
Green, 2019).

Asellus aquaticus shows sexual dimorphism in body size: for
any given age, males are larger than females (Box 1). Moreover,
within populations, mating is size assortative in that larger
males tend to pair with larger females (Ridley and Thompson,
1979). Mating in A. aquaticus is assortative also with respect to
fluorescence (produced by Zenker cells), but the relevance of this
is little studied so far (but see Zimmer et al., 2002b; Figure 2).
Several lines of evidence suggest that sexual selection is important
in A. aquaticus. Mating is preceded by a precopulatory stage
(called amplexus or mate guarding), whereby males grasp onto
the females with specialized legs (i.e., specialized fourth pair of
pereopods) and wait for days until the female molts into a fertile
state (see Box 1). Inter-male competition is likely to influence
patterns of non-random mating as larger males are more likely
to pair, and to displace small males from pairs (Verspoor, 1982;
Adams et al., 1985; Hargeby and Erlandsson, 2006). In line with
this, larger males seem to have a mating advantage (Crespi, 1989),
which might determine the observed patterns of assortative
mating in A. aquaticus (Ridley and Thompson, 1979).

The precopulatory mate guarding behavior in A. aquaticus
imposes an intimate association between body size (and
assortative mating) and reproductive success. In other species,
precopulatory mate guarding can be subject to sexual conflict
(Cameron et al., 2003; Arnqvist and Rowe, 2005; Wedell et al.,
2006), mainly because the optimal duration of mate guarding
can differ between males and females (Jormalainen et al.,
1994; Jormalainen, 1998). In A. aquaticus, the probability of
successful mate guarding increases with male size (Ridley and
Thompson, 1979; Verspoor, 1982). However, males also tend
to choose females that are closer to being fecund (Ridley
and Thompson, 1979; Verspoor, 1982). This could potentially
represent a compromise between pairing with a larger, more
fecund female, and pairing with a smaller, but easier to carry
female. All together, the relationship between pre-copulatory
mate guarding and assortative mating in A. aquaticus offers an
excellent opportunity to test empirically theories on life history
evolution (Stearns, 1992; Roff, 1993; Wedell et al., 2006).

INTEGRATION AND FUTURE
PERSPECTIVES

As stated at the onset of our review, understanding how
organisms and ecosystems respond to environmental change
requires integrative efforts that explore organism-environment
interactions at different hierarchical levels (Lewontin, 1983;
Kokko and López-Sepulcre, 2007; Post and Palkovacs, 2009;
Matthews et al., 2014). Here, we have presented A. aquaticus,
a species that is broadly distributed, ecologically relevant,
experimentally tractable, and that has a well-studied natural
history, as a suitable study system for integrative studies across
different temporal, spatial, and biological scales. Building on
the knowledge that we have synthesized in this review, we

next suggest some specific avenues of integrative research using
A. aquaticus. We particularly highlight two areas: first, the
study of relationships between spatio-temporal environmental
variability and phenotypic plasticity, and second, the study of
host-microbiome interactions in relation to ecosystem function.

Spatio-Temporal Environmental
Variability and Phenotypic Plasticity
Understanding how organisms cope with environmental
variation has been a central theme in evolutionary biology and
in ecology, and is becoming more relevant in the context of
climate change (Charmantier et al., 2008; Chevin et al., 2010;
Moritz and Agudo, 2013). Organismal traits can respond to
environmental variation in different manners, and the type
of adaptive responses depends on the predictability and the
timescale of the environmental fluctuations (Leimar et al., 2006;
Reed et al., 2010; Botero et al., 2015). Reversible phenotypic
changes (via plasticity) are thought to be more likely under rapid
or fluctuating environmental change, while genetic adaptation
is considered more likely in response to long-term (and often
gradual) environmental changes (Rando and Verstrepen, 2007;
Stomp et al., 2008). Moreover, phenotypic plasticity is thought
to be favored when environmental fluctuations are predictable
(Lande, 2009; Botero et al., 2015; Tufto, 2015) and in the
presence of gene flow (Sultan and Spencer, 2002; Crispo, 2008).
Plasticity is often (but not always) adaptive (i.e., environmentally
induced phenotypic change leads to a better match between
phenotype and selective environment; e.g., Gotthard and
Nylin, 1995; Ghalambor et al., 2007). In such cases, adaptive
plasticity can allow populations to persist under heterogeneous
environments, including those changing as a consequence of
human activity (Charmantier et al., 2008; Merilä and Hendry,
2014; Sgrò et al., 2016).

Asellus aquaticus is well-suited for empirically testing the
relationship between environmental variability and the evolution
of plasticity (Tufto, 2000; Leimar et al., 2006; Lande, 2009). Given
that the species occurs in temporally stable cave and deep water
environments (e.g., Turk et al., 1996; Protas et al., 2011), as well
as in spatio-temporally variable lakes and streams (e.g., Murphy
and Learner, 1982; Hargeby, 1990b; Hargeby et al., 2007), genetic
trait polymorphism or plasticity may be favored in different
contexts (Sultan and Spencer, 2002; Richardson et al., 2014). The
available evidence for ecogeographical variation in phenotypic
traits in A. aquaticus provides a solid foundation for future
studies aiming to understand genetic and phenotypic variation
in fitness related traits.

One trait of particular interest in this context is body
pigmentation. As stated above (section “Surface-Cave
Divergence” and “Ecotype Divergence Within Lakes”; Figure 2),
pigmentation in A. aquaticus is highly variable, may influence
predation risk in lakes (Eroukhmanoff and Svensson, 2009;
Eroukhmanoff et al., 2009a) and can be dramatically reduced
in caves (Verovnik and Konec, 2019). Both surface water and
cave studies in A. aquaticus suggest that color polymorphism
is, at least in part, genetically determined (Hargeby et al., 2004;
Protas et al., 2011). On the other hand, two recent studies also
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show extensive diet-based plasticity in A. aquaticus pigmentation
(Lürig et al., 2019; Lürig and Matthews, 2021). This nutritional
plasticity in body color has been hypothesized to help reduce
the negative effects of high protein diets. Tryptophan, an amino
acid whose concentration can vary strongly across diets, is toxic
at high intracellular levels, but by forming inert pigments from
soluble tryptophan, arthropods may avoid the negative effects of
high protein diets (Linzen, 1974). Along these lines, variation in
A. aquaticus pigmentation within lakes could also be explained
by an alternative, but not mutually exclusive, hypothesis to
predator-mediated selection: variation in pigmentation between
habitats could reflect avoidance of cell toxicity when feeding on
different dietary resources (e.g., reed versus stonewort).

Cave adapted A. aquaticus provide another intriguing case
of evolution of pigmentation – likely in part via developmental
plasticity of biochemical pathways (e.g., Bilandžija et al., 2020).
The aforementioned different lines of evidence provide the
foundations to explore how genes and environmental conditions
co-determine the production and evolution of pigmentation and,
in a broader sense, of phenotypic variation.

Host-Microbiome Interactions and
Ecosystem Function
In the quest of predicting the impact of anthropogenic activity
on nature, researchers are trying to understand the relationship
between biodiversity and ecosystem functioning (Loreau et al.,
2001; Hooper et al., 2005; Hillebrand and Matthiessen, 2009).
In the past, this has been mostly studied from the perspective
of the effects of environmental stressors on either individuals,
populations, or ecosystems (Hoffmann and Parsons, 1997;
Steinberg, 2012). However, it is becoming increasingly clear
that an isolated perspective on the different scales of ecological
organization may be overly simplistic and could lead to imprecise
predictions of biodiversity–ecosystem function (Isbell et al.,
2018). It is therefore important to take a more integrative
perspective investigating biodiversity–ecosystem function across
different spatial and temporal scales (Gonzalez et al., 2020).

Asellus aquaticus seems particularly well-suited to explore
the inter-connectedness and reciprocal interactions across levels
of ecological organization. This is, in particular, because of
the potentially tight relationships between host microbiome
(see section “Microbial Associations”), host performance,
and ecosystem function. For instance, the accumulation and
decomposition rate of organic material can be influenced by
both environmentally acquired (Bärlocher and Porter, 1986;
Bärlocher, 1992) and endosymbiotic microbes in the isopod
digestive system (Robson, 1979; Zimmer and Bartholmé,
2003; Hasu et al., 2008). Gut microbial endosymbionts are
likely to allow A. aquaticus to exploit a range of different
diets (Robson, 1979; Zimmer and Bartholmé, 2003; Hasu
et al., 2008; Bredon et al., 2020) (see section “Detritivory and
Competition”). Furthermore, gut bacteria can provide protection
against secondary infections by intestinal parasites (e.g., Buffie
and Pamer, 2013; Knutie, 2018), further strengthening the
potential role of the microbiome in host fitness. How variation in
microbiome composition influences the processing of different

nutritional sources, and the extent to which this affects rates of
decomposition and defenses against parasites are, in general, not
well understood. Further investigations of microbiome assembly
mechanisms in A. aquaticus can help to elucidate whether and
how dietary and/or parasitic symbiotic associations cascade to
ecosystem function.

CONCLUDING REMARKS

Here we have summarized key aspects of knowledge from
150 years of research on A. aquaticus to highlight its potential
as a broadly usable model system for the biological realm.
The quest to better understand the evolutionary significance
and ecological relevance of organism-environment interactions
will benefit from integrative efforts that combine concepts and
approaches across multiple disciplines. This integrative effort
should include research across the interfaces between different
disciplines and, importantly, include more animal systems,
such as A. aquaticus, that permit inquiries from individual to
ecosystem scale (Lewontin, 1983; Kokko and López-Sepulcre,
2007; Post and Palkovacs, 2009; Matthews et al., 2014). Increasing
the diversity of study systems in ecology and evolution can
also help to unravel the wondrous diversity of evolutionary
processes in natural populations and how this diversity influences
ecological processes (Bolker, 2014; Duffy et al., 2021).
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Rudy, J., Rendoš, M., L’uptáčik, P., and Mock, A. (2018). Terrestrial isopods
associated with shallow underground of forested scree slopes in the Western
Carpathians (Slovakia). ZooKeys 801, 323–335. doi: 10.3897/zookeys.801.24113

Ruxton, G. D., Allen, W. L., Sherratt, T. N., and Speed, M. P. (2019). Avoiding
Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry. Oxford:
Oxford University Press. doi: 10.1093/oso/9780199688678.001.0001

Salemaa, H. (1979). The chromosomes of Asellus aquaticus (l.): a technique for
isopod karyology. Crustaceana 36, 316–318. doi: 10.1163/156854079X00799

Salvanes, A., and Hart, P. J. B. (1998). Individual variability in state-dependent
feeding behaviour in three-spined sticklebacks. Anim. Behav. 55, 1349–1359.
doi: 10.1006/anbe.1997.0707

Santschi, F., Gounand, I., Harvey, E., and Altermatt, F. (2018). Leaf litter
diversity and structure of microbial decomposer communities modulate litter
decomposition in aquatic systems. Funct. Ecol. 32, 522–532. doi: 10.1111/1365-
2435.12980

Schädel, M., van Eldijk, T. M., St, H. W., Reu, J. W., and Haug, J. M. T. (2020).
Triassic Isopoda – three new species from Central Europe shed light on the early
diversity of the group. Bull. Geosci. 95, 145–166. doi: 10.3140/bull.geosci.1773

Schlichting, C. D., and Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm
Perspective. Sunderland, MA: Sinauer.

Schluter, D., Clifford, E. A., Nemethy, M., and McKinnon, J. S. (2004). Parallel
evolution and inheritance of quantitative traits. Am. Nat. 163, 809–822. doi:
10.1086/383621

Schmidt, C. (2008). Phylogeny of the terrestrial Isopoda (Oniscidea): a review.
Arthropod. Syst. Phylog. 66, 191–226.

Schmitz, O. J., Wilmers, C. C., Leroux, S. J., Doughty, C. E., Atwood, T. B., Galetti,
M., et al. (2018). Animals and the zoogeochemistry of the carbon cycle. Science
362:eaar3213. doi: 10.1126/science.aar3213

Schoener, T. W. (2011). The newest synthesis: understanding the interplay of
evolutionary and ecological dynamics. Science 331, 426–429. doi: 10.1126/
science.1193954

Schwab, D. B., Casasa, S., and Moczek, A. P. (2018). On the reciprocally causal and
constructive nature of developmental plasticity and robustness. Front. Genet.
9:735. doi: 10.3389/fgene.2018.00735

Seehausen, O., and Wagner, C. E. (2014). Speciation in Freshwater Fishes. London:
Annual Reviews. doi: 10.1146/annurev-ecolsys-120213-091818

Selden, P. A., Wilson, G. D. F., Simonetto, L., and Dalla Vecchia, F. M. (2016).
First fossil asellote (Isopoda: Asellota), from the Upper Triassic (Norian) of
the Carnic Prealps (Friuli, Northeastern Italy). J. Crustacean Biol. 36, 68–86.
doi: 10.1163/1937240X-00002387

Seppälä, O., Valtonen, E. T., and Benesh, D. P. (2008). Host manipulation
by parasites in the world of dead-end predators: adaptation to enhance
transmission? Proc. Biol. Sci. R. Soc. 275, 1611–1615. doi: 10.1098/rspb.2008.
0152

Sgrò, C. M., Terblanche, J. S., and Hoffmann, A. A. (2016). What can plasticity
contribute to insect responses to climate change? Annu. Rev. Entomol. 61,
433–451. doi: 10.1146/annurev-ento-010715-023859

Shen, Y., Kou, Q., Zhong, Z., Li, X., He, L., He, S., et al. (2017). The first
complete mitogenome of the South China deep-sea giant isopod Bathynomus
sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic
evolution of isopods. Ecol. Evol. 7, 1869–1881. doi: 10.1002/ece3.2737

Shine, R., O’connor, D., Lemaster, M. P., and Mason, R. T. (2001). Pick on someone
your own size: ontogenetic shifts in mate choice by male garter snakes result in
size-assortative mating. Anim. Behav. 61, 1133–1141. doi: 10.1006/anbe.2001.
1712

Silver, L. M. (1995). Mouse Genetics: Concepts and Applications. Oxford: Oxford
University Press.

Simcic, T., Lukancic, S., and Brancelj, A. (2005). Comparative study of electron
transport system activity and oxygen consumption of amphipods from caves
and surface habitats. Freshw. Biol. 50, 494–501. doi: 10.1111/j.1365-2427.2005.
01339.x

Sket, B. (1994). Distribution of Asellus aquaticus (Crustacea: Isopoda: Asellidae)
and its hypogean populations at different geographic scales, with a note on
Proasellus istrianus. Hydrobiologia 287, 39–47. doi: 10.1007/BF00006895

Skúlason, S., Parsons, K. J., Svanbäck, R., Räsänen, K., Ferguson, M. M., Adams,
C. E., et al. (2019). A way forward with eco evo devo: an extended theory
of resource polymorphism with postglacial fishes as model systems. Biol. Rev.
Camb. Philos. Soc. 94, 1786–1808. doi: 10.1111/brv.12534

Soares, D., and Niemiller, M. L. (2013). Sensory adaptations of fishes to
subterranean environments. Bioscience 63, 274–283. doi: 10.1525/bio.2013.63.
4.7

Solomon, C. T., Carpenter, S. R., Cole, J. J., and Pace, M. L. (2008). Support of
benthic invertebrates by detrital resources and current autochthonous primary
production: results from a whole-lake 13C addition. Freshw. Biol. 53, 42–54.
doi: 10.1111/j.1365-2427.2007.01866.x

Stahl, B. A., Gross, J. B., Speiser, D. I., Oakley, T. H., Patel, N. H., Gould, D. B.,
et al. (2015). A transcriptomic analysis of cave, surface, and hybrid isopod
crustaceans of the species Asellus aquaticus. PLoS One 10:e0140484. doi: 10.
1371/journal.pone.0140484

Stamm, C., Räsänen, K., Burdon, F. J., Altermatt, F., Jokela, J., Joss, A., et al.
(2016). “Chapter four - unravelling the impacts of micropollutants in aquatic
ecosystems: interdisciplinary studies at the interface of large-scale ecology,”
in Advances in Ecological Research, eds A. J. Dumbrell, R. L. Kordas, and G.
Woodward (Cambridge, MA: Academic Press), 183–223. doi: 10.1016/bs.aecr.
2016.07.002

Stearns, S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University
Press.

Steel, C. G. H. (1982). Stages of the intermoult cycle in the terrestrial isopod Oniscus
asellus and their relation to biphasic cuticle secretion. Can. J. Zool. 60, 429–437.
doi: 10.1139/z82-058

Steel, E. A. (2009). Some observations on the life history of Asellus aquaticus (L.)
and Asellus meridianus racovitza (Crustacea: Isopoda). Proc. Zool. Soc. Lond.
137, 71–87. doi: 10.1111/j.1469-7998.1961.tb06162.x

Steffan, A. W. (1967). Ectosymbiosis in Aquatic Insects. Amsterdam: Elsevier,
207–289. doi: 10.1016/B978-1-4832-2758-0.50011-4

Steinberg, C. E. W. (2012). Stress Ecology. Dordrecht: Springer. doi: 10.1007/978-
94-007-2072-5

Stomp, M., van Dijk, M. A., van Overzee, H. M. J., Wortel, M. T., Sigon, C. A. M.,
Egas, M., et al. (2008). The timescale of phenotypic plasticity and its impact
on competition in fluctuating environments. Am. Nat. 172, 169–185. doi:
10.1086/591680

Stouthamer, R., Breeuwer, J. A., and Hurst, G. D. (1999). Wolbachia pipientis:
microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53,
71–102. doi: 10.1146/annurev.micro.53.1.71

Stouthamer, R., Luck, R. F., and Hamilton, W. D. (1990). Antibiotics cause
parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert
to sex. Proc. Natl. Acad. Sci. U.S.A. 87, 2424–2427. doi: 10.1073/pnas.87.7.
2424

Frontiers in Ecology and Evolution | www.frontiersin.org 21 November 2021 | Volume 9 | Article 748212

https://doi.org/10.1086/705380
https://doi.org/10.1890/13-0587.1
https://doi.org/10.1890/13-0587.1
https://doi.org/10.1111/j.1439-0310.1979.tb00697.x
https://doi.org/10.1111/j.1439-0310.1979.tb00697.x
https://doi.org/10.1146/annurev.ecolsys.38.091206.095733
https://doi.org/10.1016/0305-0491(79)90124-X
https://doi.org/10.1007/BF00294998
https://doi.org/10.2307/3544059
https://doi.org/10.2307/3544749
https://doi.org/10.1016/j.cub.2013.01.026
https://doi.org/10.3897/zookeys.801.24113
https://doi.org/10.1093/oso/9780199688678.001.0001
https://doi.org/10.1163/156854079X00799
https://doi.org/10.1006/anbe.1997.0707
https://doi.org/10.1111/1365-2435.12980
https://doi.org/10.1111/1365-2435.12980
https://doi.org/10.3140/bull.geosci.1773
https://doi.org/10.1086/383621
https://doi.org/10.1086/383621
https://doi.org/10.1126/science.aar3213
https://doi.org/10.1126/science.1193954
https://doi.org/10.1126/science.1193954
https://doi.org/10.3389/fgene.2018.00735
https://doi.org/10.1146/annurev-ecolsys-120213-091818
https://doi.org/10.1163/1937240X-00002387
https://doi.org/10.1098/rspb.2008.0152
https://doi.org/10.1098/rspb.2008.0152
https://doi.org/10.1146/annurev-ento-010715-023859
https://doi.org/10.1002/ece3.2737
https://doi.org/10.1006/anbe.2001.1712
https://doi.org/10.1006/anbe.2001.1712
https://doi.org/10.1111/j.1365-2427.2005.01339.x
https://doi.org/10.1111/j.1365-2427.2005.01339.x
https://doi.org/10.1007/BF00006895
https://doi.org/10.1111/brv.12534
https://doi.org/10.1525/bio.2013.63.4.7
https://doi.org/10.1525/bio.2013.63.4.7
https://doi.org/10.1111/j.1365-2427.2007.01866.x
https://doi.org/10.1371/journal.pone.0140484
https://doi.org/10.1371/journal.pone.0140484
https://doi.org/10.1016/bs.aecr.2016.07.002
https://doi.org/10.1016/bs.aecr.2016.07.002
https://doi.org/10.1139/z82-058
https://doi.org/10.1111/j.1469-7998.1961.tb06162.x
https://doi.org/10.1016/B978-1-4832-2758-0.50011-4
https://doi.org/10.1007/978-94-007-2072-5
https://doi.org/10.1007/978-94-007-2072-5
https://doi.org/10.1086/591680
https://doi.org/10.1086/591680
https://doi.org/10.1146/annurev.micro.53.1.71
https://doi.org/10.1073/pnas.87.7.2424
https://doi.org/10.1073/pnas.87.7.2424
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-748212 October 30, 2021 Time: 18:29 # 22

Lafuente et al. Integrative Research With Asellus aquaticus

Sultan, S. E. (2015). Organism and Environment: Ecological Development, Niche
Construction, and Adaption. Oxford: Oxford University Press. doi: 10.1093/
acprof:oso/9780199587070.001.0001

Sultan, S. E. (2021). “Phenotypic Plasticity as an Intrinsic Property of Organisms,”
in Phenotypic Plasticity & Evolution, ed. D. W. Pfennig (Boca Raton, FL: CRC
Press), 3–24. doi: 10.1201/9780429343001-2

Sultan, S. E., and Spencer, H. G. (2002). Metapopulation structure favors plasticity
over local adaptation. Am. Nat. 160:271. doi: 10.1086/341015

Svensson, E. I. (2018). On reciprocal causation in the evolutionary process. Evol.
Biol. 45, 1–14. doi: 10.1007/s11692-017-9431-x

Sworobowicz, L., Grabowski, M., Mamos, T., Burzyński, A., Kilikowska, A., Sell,
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