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Thursday 22nd August 2019

Dear editorial board of Journal of Invertebrate Pathology,

Enclosed you will find an electronic version of our manuscript: “The common 

woodlouse Armadillidium vulgare responds to a second infection of Salmonella enterica by 

improving its survival capacity” for submission as a research article in Journal of Invertebrate 

Pathology. 

In this manuscript, we contribute to the characterization of immune priming in 

arthropods, a phenomenon defined as an enhanced protection from past infection with a 

pathogen. 

We have for the first time brought to light the existence of this protection in the 

terrestrial crustacean Armadillidium vulgare, by demonstrating (i) survival improvement in 

response to a second infection with Salmonella enterica and (ii) differences in haemocyte-

related parameters depending on the priming treatment. The originality of our study also lies in 

new elements about the delay required to observe a protective effect and the duration for which 

the host remains protected against living bacteria. By the way, the protection against Salmonella 

in A. vulgare follows a temporal dynamic over the time between the two infections. We used 

living bacteria, whereas experiments on crustacean immune priming generally used inactivated 

pathogens to prime animals. To date, only one published study was carried on a terrestrial 

crustacean while these animals display appropriated features for the evolution of immune 

priming. 

We certify the findings have not been published elsewhere and are only being submitted 

to Journal of Invertebrate Pathology. All authors have read and approved the material being 

submitted.

We truly hope the readers of Journal of Invertebrate Pathology will find the paper quite 

interesting and mostly helpful for researchers working on invertebrate immune priming.

Yours faithfully 



Thursday 7th of November 2019

Dear editorial board of Journal of Invertebrate Pathology,

Enclosed you will find our revised manuscript: “Survival capacity of the common woodlouse 

Armadillidium vulgare is improved with a second infection of Salmonella enterica” for a 

second revision as a research article in Journal of Invertebrate Pathology. 

We would like to express our thanks to the reviewer and editors for the positive 

feedback, constructive comments and the thorough checking of the text. We took into account 

all the suggested modifications, which had substantially improved the manuscript quality. 

We are very grateful to know our work was approved for the Journal of Invertebrate 

Pathology. 

Thank you again for your consideration of our work. 

Yours faithfully 



Highlights 

Immune priming with Salmonella enterica improved survival of Armadillidium vulgare

Survival of A. vulgare to an LD50 dosage was higher when primed 7 days earlier

The protection isn’t observed when 1 or 15 days separate the two infections

Primed animals display higher haemocyte viabilities but lower concentrations



Survival improvement in Armadillidium vulgare against Salmonella enterica

1) A. vulgare immune sytem was
primed with a low dose of 

living S. enterica

2) 7 days elapsed after
the first infection

4) A. vulgare was
infected with a high dose 

of living S. enterica

3) Haemocytes of A. vulgare
present a better viability but a 

lower concentration 

5) Primed A. vulgare displayed
better survival rate compared

to non primed animals
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23 1. Introduction

24 Because invertebrates rely solely on the innate immune system and are not known to 

25 possess a vertebrate-like adaptive immunity (Kurtz, 2005; Milutinovic and Kurtz, 2016), they 

26 have long been considered unable to establish an immune memory (Hoffmann et al., 1999). In 

27 the past 20 years, several studies have shaken this paradigm by providing evidence that the 

28 invertebrate immune system could be stimulated during a first infection to pathogens, leading 

29 to better protection upon a second exposure. Studying this phenomenon, called “immune 

30 priming” (Milutinovic and Kurtz, 2016; Gourbal et al., 2018; Pradeu and Pasquier, 2018), is all 

31 the more relevant in that natural populations display variations in their immune priming (Khan 

32 et al., 2016). This variability may reflect adaptive responses to various environmental 

33 conditions independently from the evolution of resistance/tolerance strategies commonly 

34 assumed (Khan et al., 2017; Ayres & Schneider, 2008).

35 Immune priming has been observed in more than 40 invertebrate species including 

36 arthropod, mollusk, cnidarian, annelid and nematode species (Milutinovic and Kurtz, 2016). 

37 Among them, the ability to mount immune priming relies on several mechanisms and may occur 

38 against some pathogens but not others. It can be expressed against a broad repertoire of 

39 pathogens or be very specific to a single species of pathogen (Contreras-Guarduño et al., 2016; 

40 Milutinovic and Kurtz, 2016; Dhinaut et al., 2017), and may result in higher survival capacity 

41 when the primed individual faces a second infection (Milutinovic and Kurtz, 2016; Mellilo et 

42 al., 2018). This protective effect is often explained by immune changes involving either (i) 

43 humoral response (e.g. production of anti-microbial peptides or AMPs, reactive oxygen species 

44 (ROS) and phenoloxydase activity), (ii) cellular response (e.g. haemocyte production, 

45 phagocytosis, encapsulation) or/and (iii) immune-related gene expression, depending on the 

46 species (Wu et al., 2015; 2016; Pinaud et al., 2016; Kutzer et al., 2018; Fugmann, 2018, Mellilo 

47 et al., 2018). Although the invertebrate immune priming phenomenon has been widely 

48 described, the delay required to provide a protective effect remains partly characterized (Little 

49 and Kraaijeveld, 2004). Few studies have addressed the time course of the immune response 

50 following the first infection by a pathogen (Rosengaus et al., 1999; Milutinovic and Kurtz, 

51 2016; Browne et al., 2015).

52 It has been suggested that mounting an immune priming response may be costly for 

53 organisms (Moret and Schmid-Hempel, 2000; Jacot et al., 2005; Contreras-Garduño et al., 

54 2014). Consequently, immune priming should preferably evolve in organisms for which 

55 probability of re-infection with the same pathogen(s) is high (Schmid-Hempel, 2005; Best et 
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56 al., 2012) and is, thus, expected in species with long lifespan, low dispersion rate and group-

57 living behaviors (Little and Kraaijeveld, 2004; Pigeault et al., 2016; Moret et al., 2019). 

58 Terrestrial isopods fulfill all the conditions assumed necessary for the evolution of immune 

59 priming. Most species can live up to 3 years and some have an estimated life expectancy of 5 

60 years (Warburg et al., 1984). These organisms live in moist soil, an environment suitable for 

61 micro-organisms (Ranjard and Richaume, 2001) where 109 bacteria per gram of soil can be 

62 found (Torsvik et al., 1990). Isopods constitute the suborder of crustaceans best adapted to a 

63 terrestrial lifestyle with the evolution of various morphological, physiological and behavioral 

64 traits (Hornung, 2011). For example, they aggregate to fight efficiently against desiccation 

65 (Broly et al., 2013, 2014) and display a low dispersion rate (Beck and Price, 1981). They are 

66 mostly promiscuous (Zimmer, 2002; Durand et al., 2017), which increases the risk of pathogen 

67 transmission within populations. Considering these features, Roth and Kurtz (2009) supported 

68 the plausibility of immune priming in the terrestrial isopod Porcellio scaber. In this species, 

69 individuals that were previously primed with heat-killed Bacillus thuringiensis had higher 

70 proportions of phagocyting haemocytes during the second encounter with the same bacteria 

71 compared to non-primed individuals. This immune response lasts at least 14 days after the first 

72 infection. No other studies have investigated immune priming in terrestrial isopods and it is not 

73 known whether the first immune stimulation provides a protection to the animal in term of 

74 survival against a subsequent infection. 

75 In this work, we explored the hypothesis that a protective effect exists in Armadillidium 

76 vulgare. This terrestrial isopod is highly gregarious, lives more than 3 years and has a well-

77 described immune system (Braquart-Varnier et al., 2008, 2015; Chevalier et al., 2011). The aim 

78 of our study was to examine whether a first infection provides protection in terms of improved 

79 survival against a second infection with the same pathogen, and to determine the time period 

80 between two infections needed to observe this protection. To further our understanding of this 

81 phenomenon, we also measured haemocyte concentration and viability immediately before the 

82 second inoculation. In crustaceans, these immune cells defend organisms against pathogens via 

83 phagocytosis, nodulation and encapsulation but are also support humoral immune responses 

84 such as coagulation, phenoloxidase activities or antimicrobial peptide storage (Söderhäll and 

85 Cerenius, 1992; Lee and Söderhäll, 2002; Chevalier et al., 2011). Haemocytes are equally 

86 suspected to enhance their functions after a first infection, allowing a better immune response 

87 against subsequent pathogen infection (Gourbal et al., 2018). 
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88 To meet these aims, we first inoculated A. vulgare females with a non-lethal low dose 

89 of living Salmonella enterica bacteria (priming treatment), which have been shown to be 

90 pathogenic for this species (Braquart-Varnier et al., 2015). After 1 day, 7 days or 15 days post-

91 infection, we investigated the cellular response by measuring the haemocyte concentration and 

92 viability. Then, the protective effect of the first injection of bacteria was explored by monitoring 

93 the survival rates of A. vulgare following a LD50 injection of S. enterica occurring at the same 

94 time points (1, 7 or 15 days) after the first injection. Should a protective effect be triggered, we 

95 expected to observe higher survival rate in individuals previously primed with S. enterica 

96 compared to those not primed with S. enterica. We also expect to observe higher haemocyte 

97 concentrations and viabilities in response to the first infection as already observed in other 

98 biological models (Pope et al., 2001; Wu et al., 2014; Zang et al., 2014). These parameters may 

99 differ at each time point post-infection, which would provide insights about the temporal 

100 dynamics of the protective effect. 

101

102 2. Materials and methods 

103 2.1 Biological model

104 The Armadillidium vulgare laboratory line used descends from cross breeding of 

105 individuals sampled in 1982 at Helsingör (Denmark). Individuals were maintained in plastic 

106 boxes (10 x 30 cm, Ets Caubere) containing moistened potting mix and were supplied ad libitum 

107 with linden leaves and carrot slices. To carry out our experiments, we used 439 1-year-old (± 2 

108 months) virgin females for survival monitoring and 153 additional females for the haemocyte 

109 analysis.

110 The pathogen used for infection was Salmonella enterica serovar Typhimurium J18 (Verdon 

111 et al., 2016), a Gram-negative bacterium which is found in soil and water (Murray, 1991; 

112 Andino and Hanning, 2015). Cultures of S. enterica were produced as described in Braquart-

113 Varnier et al. (2015) (see S1 in supplementary materials for detailed method). 

114

115 2.2 Experiments

116 2.2.1 Experimental design 
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117 We performed two experiments on individuals that received a first injection (i.e. priming 

118 procedure, see part 2.2.2). The first experiment was conducted to measure haemocyte 

119 concentration and viability after 1, 7 or 15 d post priming procedure (see part 2.2.3.1) but also 

120 the persistence of living S. enterica in haemolymph (see part 2.2.3.2). We selected these time 

121 points based on results of previous studies on crustacean immune priming (Roth & Kurtz, 2009; 

122 Chang et al., 2018). The second experiment was performed to monitor individual survival rate 

123 after receiving a LD50 of bacteria injected 1, 7 or 15 d after the priming procedure (see part 

124 2.2.4 and Fig. 1). Different individuals were used for each experiment and time point. Each 

125 experiment was replicated several times (three independent experimental replicates for 

126 haemolymph analysis and seven for survival monitoring). Within each experimental replicate, 

127 we performed several series of the priming procedure (see S2 in supplementary materials). 

128 Datasets are available on the open access repository Mendeley Data (Prigot-Maurice et al., 

129 2019). 

130 2.2.2 Priming procedure

131 Each individual was washed (3% NaClO then water) prior conducting three priming 

132 treatments: (1) non-injected (“non-primed” group) as a control, (2) injected with Luria-Bertani 

133 (LB) medium (“LB-primed” group), and (3) injected with a non-lethal dose of 103 ± 1.103 living 

134 S. enterica in 100 nL of LB medium (“S. enterica-primed” group). The sample sizes are 

135 summarized in Table I. All injections were performed under sterile conditions using a 

136 Drummond TM Nanoject (3-000-205A), in two 50 nL consecutive injections. The A. vulgare 

137 were injected dorsally in their posterior abdominal segment. Each individual was then isolated 

138 in a plastic box (5 cm x 8 cm Ø, Ets Caubere) containing a moist paper, under a natural 

139 photoperiod at 20°C and without food, to avoid any external contamination and variations in 

140 food intake. After each bacterial injection, the injected dose was controlled by spreading 100 

141 µL of the solution diluted to 1 bacteria/µL onto LB agar plates. After an overnight culture at 37 

142 °C, the number of S. enterica colonies was counted. All animals remained in their individual 

143 box for either 1, 7 or 15 d until haemolymph analysis (first experiment, see part 2.2.3) or LD50 

144 injection for survival monitoring (second experiment, see part 2.2.4). 

145

146 2.2.3 Haemolymph analysis 

147 2.2.3.1 Haemocyte parameters
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148 Haemocyte concentration and viability were generally measured on the same individual 

149 (see sample size in Table I). The haemolymph sampling procedure as well as the measure of 

150 the number of immune cells per µL of haemolymph (i.e. concentration) and the percentage of 

151 living cells (i.e. viability) were performed as described by Sicard et al. (2010). Briefly, each 

152 individual was washed a second time (3% NaClO) then water). The integument was pierced 

153 dorsally on the sixth tergite with a sterile needle, and the resulting drop of haemolymph was 

154 collected with a pipette. Three µL of haemolymph were diluted in 15 µL of MAS (27 mM 

155 sodium citrate: 336 mM NaCl, 115 mM glucose, 9 mM EDTA, pH 7; Herbinière et al. 2005) 

156 and 6 µL of 0.4 % Trypan blue. Then, 10 µL of each sample were deposited in a counting 

157 chamber and analyzed in an automated cell counter (Countess TM Version B, Invitrogen).

158 2.2.3.2 Evaluation of S. enterica persistency

159 To test whether living S. enterica persist in the haemolymph of individuals primed with the 

160 bacteria at the three time points tested (1, 7, 15 d), 5 additional µL of haemolymph collected 

161 from individuals used to measure haemocyte parameters were added to 95 µL of LB medium. 

162 The solutions were plated onto LB agar plates and incubated overnight at 37°C before counting 

163 the number of LB agar plates presenting at least one colony of S. enterica for each time point. 

164 S. enterica was identified by using MALDI Biotyper® Compass (v4.1 from Bruker Daltonik 

165 GmbH), according to the Bruker manufacturer protocol. This technique is commonly use in 

166 clinical microbiology for strain identification because it is more precise than the morphological 

167 approach (Scott et al., 2016; Kostrzewa, 2018).

168

169  2.2.4. Survival monitoring

170 All individuals (non-primed, LB-primed and S. enterica-primed) intended for survival 

171 monitoring were injected with a LD50 (dosage to kill 50% of animals in 7 days) of 3.105 ± 1.105 

172 living S. enterica in 100 nL (Braquart-Varnier et al., 2015; see sample size in Table I), either 1, 

173 7 or 15 d after the priming procedure. Individuals were returned to their boxes and survival was 

174 monitored every 8 h for 7 d. Humidity was controlled and adjusted daily. The injected dosage 

175 was controlled using the same method as the priming procedure.

176

177 2.3 Statistical analysis
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178 All statistical analyses were performed with R, version 3.4.1 (R Core Team, 2017). 

179 For the haemocyte analysis, we constructed two generalized linear mixed-effect models: 

180 one with concentration and the other with viability as response variables, both built using the 

181 lme4 package (Fox and Weisberg, 2011) and tested with Wald χ² using the car package (Bates 

182 et al., 2015). Haemocyte concentration (number of haemocytes per µL) was modeled with a 

183 Poisson error distribution and haemocyte viability (percentage of living cells) was modeled 

184 with a Binomial error distribution. For these two models, the priming treatment (non-primed, 

185 LB-primed and S. enterica-primed) and the time point (1, 7, 15 d) were entered as categorical 

186 fixed effects with the interaction between these two terms. In addition, to correct the non-

187 independence of samples within the same series in a given replicate, we entered two categorical 

188 random factors: the experimental replicates and the series nested within each experimental 

189 replicate (Harrison et al., 2018). For the haemocyte concentration, we added an Observation 

190 Level Random Effect (OLRE). This variable corresponds to a unique level of a random factor 

191 for each data point, in order to cope with over dispersion (Harrison, 2014). 

192 For the survival data (frequency of living animals), a global mixed-effects Cox 

193 proportional hazard regression model was built using coxme packages (Therneau et al., 2003). 

194 We included the priming treatment, the time point and their interaction as fixed effects and the 

195 experimental replicate as well as the series nested within each replicate as random factors. We 

196 obtained the Hazard Ratios (HR) from this model as an estimate of the ratio between the 

197 instantaneous risks of death between control (non-primed) and the priming treatments (LB-

198 primed, S. enterica-primed). 

199 In all statistical models, our focal variable of interest was always the priming treatment. 

200 The fixed effect “time point” was treated as a covariate and the inclusion of the interaction term 

201 between “time point” and “priming treatment” allowed us to compare the three priming 

202 treatments at each time point, independently of the two other time points. These comparisons 

203 were made by analyzing all relevant pairs of means with Tukey adjustment (lsmeans package; 

204 Lenth, 2018). Using this approach, the interaction term and the main time point term were 

205 retained in the models even if not significant (Agresti, 2002). However, we did not use these 

206 models to statistically test for the effect of time point on haemocyte parameters and animal 

207 survival because of the correlation between the fixed effect “time point” and the random effect 

208 “experimental replicate”, preventing the correct attribution of variance to each effect (see S2 in 

209 supplementary materials for more details). 
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210 3. Results

211 3.1 Haemolymph analysis

212 3.1.1 Variation in haemocyte parameters

213  Priming treatment had an effect on haemocyte concentration (χ2 = 16.42, df = 2, p < 

214 0.001), but there was no significant effect of time post-priming (χ2 = 1.19, df = 2, p = 0.550) 

215 nor of the interaction between priming treatment and time post-priming (χ2 = 4.20, df = 4, p = 

216 0.379). At 1 and 7 d post-priming, the non-primed and LB-primed individuals had more 

217 haemocytes than S. enterica-primed ones (1 d: p = 0.004 and p = 0.023, respectively; 7 d: p = 

218 0.043 and p = 0.023, respectively; Table II, Fig. 2). In contrast, no difference in haemocyte 

219 concentration between these priming treatments was observed at 15 d post priming (non-primed 

220 vs S. enterica-primed: p = 0.799; LB-primed vs S. enterica-primed: p = 0.966, Table II, Fig. 2). 

221 For all time points, no significant difference in haemocyte concentration was observed between 

222 non-primed and LB-primed individuals (p > 0.05 for all comparisons, Table II, Fig. 2).

223 Priming treatment had an effect on haemocyte viability (percentage of living cells) (χ2 = 

224 139.49, df = 2, p < 0.001), but there was no significant effect of the time post-priming (χ2 =1.50, 

225 df = 2, p = 0.470) nor of the interaction between priming treatment and time, even if a trend 

226 was observed (χ2 =8.57, df = 4, p = 0.072). Whatever the time period after the priming 

227 procedure, haemocyte viability was higher for S. enterica-primed individuals than non-primed 

228 individuals (p < 0.001 for all comparisons, Table II, Fig. 3) and LB-primed individuals (1 d: p 

229 = 0.003; 7 d: p < 0.001; 15 d: p = 0.016, Table II, Fig. 3). Haemocyte viability was not 

230 significantly different between non-primed and LB-primed individuals at 1 d after priming (p 

231 = 0.20, Table II, Fig. 3), whereas non-primed individuals had a lower haemocyte viability 

232 compared to LB-primed one’s at 7 d (p = 0.008, Table II, Fig. 3) and 15 d after the priming 

233 procedure (p < 0.001, Table II, Fig. 3). 

234

235 3.1.2 Presence of living S. enterica in haemolymph

236 One day after the priming injections, 91% (20 out of 22 plates) of the LB agar plates 

237 spread with haemolymph from S. enterica-primed individuals contained S. enterica colonies. 

238 At 7 d, 100% displayed colonies (10 plates) whereas only 59% (10 out of 17 plates) of the plates 

239 presented colonies 15 d after priming. This shows that S. enterica was still present in the 

240 haemolymph of some individuals when we injected the LD50 (3.105 ± 1.105 living S. enterica). 

241 No S. enterica was detected in the haemolymph from non-primed and LB-primed individuals.
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242 3.2 Survival rate in response to a LD50 injection of S. enterica

243 Priming treatment had an effect on the survival rate (χ2 = 18.88, df = 2, p < 0.001, Fig. 

244 4) as well as the interaction between priming treatment and time post-priming (χ2 = 15.12, df = 

245 4, p = 0.004). Therefore, the effect of the priming treatment depends on the time post priming. 

246 No effect of the time point factor alone was observed on the survival rate (χ2 = 2.58, df = 2, p = 

247 0.274).

248 When the LD50 injection occurred 1 d after the priming procedure, S. enterica-primed 

249 individuals did not survive significantly better than non-primed individuals (p = 0.411, Table 

250 III, Fig. 4A). LB-primed individuals displayed a significantly higher survival rate than non-

251 primed ones (p = 0.001, Table III, Fig. 4A) and S. enterica-primed individuals (p = 0.037, Table 

252 III, Fig. 4A). The risks of death of LB-primed and S. enterica-primed individuals were 78% 

253 (HR = 0.22; 95% CI = [0.094 - 0.52]) and 33% (HR = 0.67; 95% CI = [0.35 - 1.26]) lower than 

254 that of non-primed controls. 

255 When the LD50 injection was performed 7 d after the priming procedure, survival rate 

256 was higher for S. enterica-primed individuals than LB-primed and non-primed ones (p = 0.003 

257 and p = 0.0001 respectively, Table III, Fig. 4B). No significant difference between LB-primed 

258 and non-primed individuals was observed (p = 0.792, Table III, Fig. 4B). The risk of death of 

259 S. enterica-primed individuals was 52% lower than that of non-primed controls (HR = 0.48; 

260 95% CI = [0.27 - 0.84]), whereas that of LB-primed ones was 25% lower than that of non-

261 primed individuals (HR = 0.75; 95% CI = [0.44 - 1.27]). At 15 d after priming procedure, no 

262 significant differences were observed between the three priming treatments (p > 0.05 for all 

263 comparisons, Table III, Fig. 4C). Nevertheless, S. enterica-primed individuals tended to have a 

264 higher survival rate than non-primed individuals (p = 0.095, Table III, Fig. 4C), with a risk of 

265 death 62% lower than that of non-primed (HR = 0.38; 95% CI = [0.17 - 0.83]). The 

266 instantaneous risk of death of LB-primed individuals was 34% lower than that of non-primed 

267 controls (HR = 0.66; 95% CI = [0.34 - 1.26]).

268

269 4. Discussion

270 4.1 Main results overview 

271 Immune priming in invertebrates is defined as a phenomenon by which a first activation 

272 of the immune system (by killed/living pathogens or inactivated pathogen units) is associated 
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273 with enhanced protection of the host against subsequent exposure to pathogens (Kurtz, 2005; 

274 Gourbal et al., 2018). In this study, we tested for enhanced protection in Armadillidium vulgare 

275 following a subsequent inoculation of the Gram-negative bacterium Salmonella enterica. 

276 Our results demonstrated the existence of a protective effect in this species because A. 

277 vulgare survival after a sublethal infection with S. enterica was higher when its immune system 

278 was activated during inoculation with the same bacteria. This protection is dynamic: immune 

279 primed individuals showed a higher survival rate than control individuals when the second 

280 infection occurred 7 d after a first infection with the same bacterial strain. There was a trend 

281 towards the persistence of this protection 15 d after the first infection (p-value = 0.09, Table III, 

282 Fig.2), but this protection was not effective when the LD50 injection was performed only 1 d 

283 after priming. We observed fluctuations in haemocyte concentration and viability, which also 

284 highlight a related dynamic immune response differing at each time following the infection. 

285

286 4.2. When the first bacterial infection is too recent to trigger an immune protection, a 

287 simple stimulation without bacteria is enough

288 Firstly, we observed that a first activation of the immune system with Luria Bertani 

289 broth resulted in higher survival of an injection of bacteria at the LD50. In fact, LB-primed 

290 individuals survival rate was about twice that of non-primed ones when the LD50 injection 

291 occurred 1 d after the LB-injection. Higher survival is likely the result of a protection 

292 phenomenon termed as “immune enhancement” by Contreras-Guarduño et al. (2016).

293 Because LB-primed individuals were not primed with the pathogen, we hypothesized 

294 that an immune response was triggered by the piercing in the integument during the priming 

295 procedure (Cerenius and Söderhäll, 2011). When the lethal dosage of S. enterica arrived in the 

296 haemolymph 1 d after the LB broth injection, the bacteria could face an already “ready-to-fight” 

297 immune system, leading to better protection (by resistance and/or tolerance) and to a higher 

298 survival rate. As haemocyte concentration is known to rapidly decrease following an injury in 

299 crustaceans (Söderhäll et al., 2003, 2016), we might expect to observe fewer haemocytes in LB-

300 primed individuals compared to non-primed ones at 1 d post-priming. But LB-primed 

301 individuals had haemocyte concentration and viability similar to non-primed individuals. This 

302 suggests a highly effective immune system having already renewed haemocytes after the injury 

303 of the cuticle (Söderhäll et al., 2003, 2016).
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304  Furthermore, we observed an intermediate survival rate in S. enterica-primed 

305 individuals at 1 d. As the immune system of S. enterica-primed individuals should be activated 

306 as in LB-primed, the absence of immune protection compared to non-primed individuals could 

307 reflect either a saturation or a depletion event of A. vulgare immune system facing a high 

308 number of bacteria. Braquart-Varnier et al. (2015) showed that 24 hours post-injection with 104 

309 living S. enterica, the bacterial load in the haemolymph was higher than the number of bacteria 

310 injected. The immune system of S. enterica-primed individuals might not have enough time, 

311 energy or reserve of immune effectors to cope with a new infection of S. enterica occurring too 

312 soon after the first infection. This hypothesis is supported by the lower haemocyte concentration 

313 observed in S. enterica-primed individuals, suggesting the immune cellular response was still 

314 fighting bacteria persisting in the haemolymph since the priming procedure. The loss of 

315 circulating haemocytes following an infection was previously observed in A. vulgare exposed 

316 to heat-killed Escherichia coli (Herbinière, 2005) and in other crustaceans (Persson et al., 1987; 

317 Muñoz et al., 2002; Söderhäll et al., 2003). Following this loss of immune cells, new 

318 haemocytes are found to be released rapidly in the haemolymph to compensate for the loss 

319 (Söderhäll et al., 2003; Chevalier et al., 2011). We hypothesize the high viability of haemocytes 

320 in S. enterica-primed individuals reflects an important hematopoietic activity, but new 

321 haemocytes might be directly used in protection against bacteria without totally compensating 

322 previous cell loss, both at 1 and 7 d after the priming procedure. However, haemocyte 

323 concentration of S. enterica-primed individuals became similar to those of other groups at 15 d 

324 post-priming. This suggests the compensation was effective between 7 and 15 d following the 

325 first infection, either by even greater haemocyte production (Pipe and Coles, 1995; Zhang et 

326 al., 2014; Söderhäll, 2016) or a smaller loss of new haemocytes. 

327 4.3 Evidence of a protective effect against the same pathogen: a minimal delay 

328 required between successive infections

329 We demonstrated increased survival when A. vulgare had encountered S. enterica 7 d 

330 before receiving a LD50 of the same pathogen, with boosted survival rates – approximately 50% 

331 higher than non-primed individuals. This protection tended to be effective until 15 d post-

332 priming procedure (30% increase in survival), which is consistent with previous studies 

333 suggesting immune priming in terrestrial and aquatic crustaceans may last for 7 to 30 d (Roth 

334 et al., 2009; Chang et al., 2018).
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335 Because the improved survival for LB-primed individuals observed at 1 d disappeared 

336 for individuals treated at 7 d and 15 d, we suppose the immune enhancement against S. enterica 

337 induced by the piercing disappeared between 1 day and 7 d post-priming procedure. By contrast, 

338 the first infection with S. enterica protected individuals from the LD50 infection, supporting that 

339 the protective effect is established between 1 and 7 d following the first infection. With regards 

340 to the duration of the protective effect, we cannot determine whether the trend of better 

341 protection observed 15 d after the priming procedure is related to a decrease in the protective 

342 effect over time or an analytical limit. This absence of significant differences between S. 

343 enterica-primed and non-primed individuals at 15 d could also be influenced by the animal 

344 physiological states. Individuals displayed different levels of nutritional stress at 1, 7 or 15 d 

345 post-priming, which may affect the resistance/tolerance ability of animals facing a second 

346 infection (Siva-Jothy and Thompson, 2002; Akoda et al., 2009; Ayres & Schneider 2009; 

347 Ponton et al., 2013; Adamo, 2017). 

348 Interestingly, we showed that living S. enterica bacteria from the first injection were 

349 still present in haemolymph of S. enterica-primed individuals until 15 d post-priming 

350 procedure. While we would expect to observe a higher mortality in such individuals because 

351 they should be weak due to the constant fight against bacteria from the first infection, A. vulgare 

352 still presented higher survival rates when receiving a LD50 of bacteria 7 (and potentially 15) d 

353 later. We thus highlight that the enhanced protection against a second infection with S. enterica 

354 in A. vulgare is possible despite the lack of clearance of the same pathogenic bacteria in the 

355 haemolymph. This species is thus able to better survive inoculation with a large quantity of 

356 living pathogen, provided the successive infections are separated enough in time. Since the 

357 natural habitat of A. vulgare is highly contaminated by several species of bacteria (Ranjard and 

358 Richaume, 2001; Karimi et al., 2018), it would not be surprising that during the immune system 

359 evolution, A. vulgare developed strong resistance and/or tolerance to repeated pathogenic 

360 infections. Most of the studies focusing on immune priming used inactivated pathogens or 

361 purified molecules to trigger this phenomenon (Milutinovic and Kurtz, 2016; Chang et al., 

362 2018), but the use of living pathogens seems more appropriate to describe the immunological 

363 capacities occurring under natural conditions.

364

365 4.4 Going inside the possible underlying mechanism(s)
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366 Three main mechanisms are currently proposed to explain the protection conferred by 

367 immune priming (i) the “immune memory”, a recalled biphasic immune response implying a 

368 specific pathogen recognition, (ii) the “immune shift” consisting in a shift from one immune 

369 effector to another between successive infections and (iii) the “sustained immune boost”, an 

370 up-regulated and long lasting immune response lasting from the first to the second infection 

371 events (Contreras-Garduño et al., 2015; Coustau et al., 2016; Pinaud et al., 2016; Greenwood 

372 et al., 2017; Lanz-Medosa and Garduño, 2018; Gourbal et al., 2018; Melillo et al., 2018; Moret 

373 et al., 2019). In this study, as S. enterica persists in the haemolymph until 15 d after the first 

374 sublethal infection, the more plausible mechanism explaining such protection could be a 

375 sustained immune boost in A. vulgare individuals primed with the bacteria. As an example, the 

376 butterflies Parasemia plantaginis and Galleria mellonella display a sustained immune response 

377 to some pathogens, conferring a protective effect and with highly maintained ROS levels and 

378 haemocyte density following a first exposure (Mikonranta et al., 2014; Wu et al., 2014). 

379 Sustained immune response in our study was illustrated by the high haemocyte viability at any 

380 time for S. enterica-primed individuals. However, this high viability of haemocytes could also 

381 reveal the production and/or differentiation of a competent cell subpopulation (Sokolova et al., 

382 2004; Snyman and Odendaal, 2009). As stated by Gourbal et al. (2018), “insects are able to 

383 select and activate a competent subpopulation of cells with enhanced capacities of lysis or 

384 phagocytosis”. For example, Rodrigues et al. (2010) demonstrated that the immune priming 

385 protection in mosquitoes against Plasmodium is not linked to a variation in haemocyte 

386 concentration but to an increased proportion of circulating granulocytes. Similarly, the survival 

387 improvement of S. enterica-primed individuals could be due to the selection and/or production 

388 of a more efficient subset of haemocytes, resulting in a protective effect against the second 

389 infection of S. enterica. We noticed that LB-primed individuals also displayed higher 

390 haemocyte viability than non-primed ones at 7 and 15 d post-priming, suggesting LB broth 

391 injection could also induce a cellular immune response (e.g Markus et al., 2005). 

392 The protective effect of immune priming in invertebrates is not based on a universal 

393 system but mobilizes a diversity of immune effectors (Brehélin and Roch, 2008; Pradeu and 

394 Pasquier, 2018, Melillo et al., 2018). We thus assume that haemocyte concentration and 

395 viability in A. vulgare cannot fully explain the increase in survival. The next step to further 

396 investigate the immune priming mechanism would be to analyze the dynamics of other immune 

397 parameters, for example, haemocyte types, ROS and AMP production. We also suggest 

398 studying the immune response over a longer period of time and testing the specificity of this 
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399 response against different pathogenic species. In addition, inactivated pathogens could be used 

400 for the priming injection in order to determine the end of the first immune response if there is 

401 one (Milutinovic and Kurtz, 2016). 

402 4.5 Concluding remarks

403 Ours results contribute to the understanding of immune priming, by providing additional 

404 details about the protective effect (in terms of survival) and the haemocyte responses in another 

405 example of a long-lived non-model arthropod. Since cell proliferation is not often monitored 

406 during the priming response (Contreras-Guarduño et al. 2016), this work also constitutes a 

407 baseline for further studies on cellular responses and the temporal dynamics of immune priming 

408 in invertebrates. 
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419 Table I

420 Sample size details of A. vulgare females used for haemocyte parameters and survival 

421 monitoring, for each priming treatment (Non-primed: non-injected; LB-primed: injected with 

422 LB; S. enterica-primed: injected with 103 S. enterica during the priming procedure) and each 

423 time point after priming procedure. For the haemocyte concentration and viability, 

424 measurements were mostly made on same individuals. As a result, sample sizes were the same 

425 for the haemocyte concentration and viability, except for sample sizes with exponent letter. a: 

426 First number is haemocyte concentration sample size; second (in parentheses) is haemocyte 

427 viability sample size.

428

429

430

431

432

HAEMOCYTE PARAMETERS 

Time points

(days)
Non-primed LB-primed S. enterica-primed

Total animals per 

time point

1 15a (17) 18b 19a(14) 52 (49)

7 17 16 15 48

15 19 14 12a (14) 45 (47)

SURVIVAL MONITORING

Time points

(days)
Non-primed LB-primed S. enterica-primed

Total animals per 

time point

1 35 35 36 106

7 59 58 57 174

15 55 54 50 159
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433 Table II

434 Pairwise comparisons (Tukey adjustment) of haemocyte parameters for the priming treatments 

435 (Non-primed: non-injected; LB-primed: injected with LB; S. enterica-primed: injected with 103 

436 S. enterica during priming procedure) at time points between priming and haemolymph 

437 sampling, 1, 7 and 15 d.

HAEMOCYTE CONCENTRATION (number of cells per µL of haemolymph)

 Days

1

estimate std error p-value

S. enterica-primed / Non-primed 0.600 0.188 0.004**

S. enterica-primed / LB-primed 0.471 0.179 0.023*

LB-primed / Non-primed 0.128 0.191 0.778

7 

S. enterica-primed / Non-primed 0.470 0.193 0.043*

S. enterica-primed / LB-primed 0.515 0.196 0.023*

LB-primed / Non-primed -0.045 0.190 0.968

15 

S. enterica-primed / Non-primed 0.128 0.201 0.799

S. enterica-primed / LB-primed 0.053 0.215 0.966

LB-primed / Non-primed 0.075 0.192 0.919

HAEMOCYTE VIABILITY (frequency of living cells)

Days

1

estimate std error p-value

S. enterica-primed / Non-primed -0.269 0.056  < 0.001***

S. enterica-primed / LB-primed -0.177 0.054 0.003**

LB-primed / Non-primed -0.091 0.054 0.207

7

S. enterica-primed / Non-primed -0.434 0.055 < 0.001***

S. enterica-primed / LB-primed -0.267 0.054 < 0.001***

LB-primed / Non-primed -0.167 0.056 0.008**

15 

S. enterica-primed / Non-primed -0.427 0.055 < 0.001***
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438
439

440 Values where p ≤ 0.05 are given in bold. Stars indicate statistical differences between priming 
441 treatments with * = 0.05 < p < 0.06, ** = p ≤ 0.05, p ≤ 0.01, *** = p ≤ 0.001. 
442
443

S. enterica-primed / LB-primed -0.158 0.057 0.016**

LB-primed / Non-primed -0.269 0.057 < 0.001***
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444 Table III

445 Pairwise comparisons (Tukey adjustment) of survival rate for the priming treatments (Non-

446 primed: non-injected; LB-primed: injected with LB; S. enterica-primed: injected with 103 S. 

447 enterica during the priming procedure) under the time points (time elapsed between priming 

448 procedure and LD50 injection.

449  

450

451

452

453

454

455

456

457

458

459

460
461
462

463 Values where p ≤ 0.05 are given in bold. Stars indicate statistical differences between priming 
464 treatments with ** = p ≤ 0.01 and *** = p ≤ 0.001.
465

466

467

468

469

SURVIVAL RATE (frequency of living animals)

Days estimate std error p-value

1

S. enterica-primed / Non-primed 0.412 0.324 0.411

S. enterica-primed / LB-primed -1.103 0.450 0.037*

LB-primed / Non-primed 1.515 0.435 0.001**

7

S. enterica-primed / Non-primed 1.208 0.296 < 0.001***

S. enterica-primed / LB-primed 1.030 0.316 0.003**

LB-primed / Non-primed 0.178 0.274 0.792

15

S. enterica-primed / Non-primed 0.858 0.413 0.095

S. enterica-primed / LB-primed 0.488 0.430 0.492

LB-primed / Non-primed 0.369 0.332 0.506
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Figure captions

Fig. 1

Experimental diagram. The first experiment consisted to prime animals either with a low dose 

of living S. enterica, LB broth medium or without injection (control). 1, 7 or 15 days later, we 

sampled haemolymph to account haemocytes (concentration, viability) and estimate the 

bacterial persistency. The second experiment was based on the same priming procedure, but 1, 

7 or 15 days later, we injected a LD50 of living S. enterica in all animals. Survival rates were 

then monitored for 7 days. These two types of experiments were divided into several 

independent experimental replicates including several independent series of priming injections. 

Fig. 2

Haemocyte concentration of A. vulgare females for each time point after the priming procedure 

(1 d, 7 d, 15 d). Non-primed: non injected; LB-primed: injected with LB; S. enterica-primed: 

injected with 103 living S. enterica during the priming procedure. Values correspond to the 

mean ± SE and stars indicate statistical differences between priming treatments (n.s: p > 0.05, 

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001). 

Fig. 3

Haemocyte viability of A. vulgare females for each time point after the priming procedure (1 d, 

7 d, 15 d). Non-primed: non injected; LB-primed: injected with LB; S. enterica-primed: injected 

with 103 living S. enterica during the priming procedure. Values correspond to the mean ± SE 

and stars indicate statistical differences between priming treatments (n.s: p > 0.05, *: p ≤ 0.05, 

**: p ≤ 0.01, ***: p ≤ 0.001). 

Fig. 4

Survival rate (%) of A. vulgare females following the lethal injection of S. enterica occurring 

(A) 1 day, (B) 7 days or (C) 15 days after the priming procedure. Non-primed: non injected; 

LB-primed: injected with LB; S. enterica-primed: injected with 103 living S. enterica during 

the priming procedure. Different letters beside curves indicate significant differences between 

the survival curves based on Tukey’s range test (p ≤ 0.05).
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7 SUPPLEMENTARY MATERIALS

8 S1: detailed description of the bacterial culture methods

9 Salmonella enterica is a non-spore-forming facultative aerobic Gram-negative strain 

10 [1]. S. enterica serovar Typhimurium J18 [2] cultures were performed either in Luria-Bertani 

11 (LB) broth composed of 25 g.L-1 of LB base (Invitrogen 12795-027), or on LB agar plates (LB 

12 broth supplemented with 15 g.L-1 of agar-agar, Fisher BioReagentsTM BP1423-2). All inocula 

13 used for injections came from a same frozen glycerol stock streaked on LB agar plate incubated 

14 at 37 °C overnight. Before each injection experiment, the bacterial solution was prepared as 

15 described in Braquart-Varnier et al. (2015) [3]. Briefly, one colony of S. enterica was cultured 

16 overnight in 5 mL of LB broth at 37 °C, 180 rpm. The next day, 100 μL of this culture were 

17 added to 3 mL of fresh LB broth and incubated at 37 °C, 180 rpm to reach a 0.7 optical density 

18 (600 nm), which corresponds to a concentration around 3.105 bacteria/μL. After centrifugation 

19 of 1 mL of this solution (2 min, 4 °C, 13.000 g), the bacterial pellet was resuspended in 300 μL 

20 of fresh LB broth, to obtain a concentration of 106 bacteria/μL (the lethal dose being around 105 

21 bacteria/100 nL). Then we performed a serial dilution, to obtain the concentration for the 

22 priming injection (103 bacteria/100 nL) and a sufficient low concentration of S. enterica (1 

23 bacteria/µL) to control the quantity of bacteria injected. To do so, we spread 100 µL of the 



2

24 diluted solution onto a LB agar plate. After an overnight culture at 37°C, we counted the number 

25 of colonies, expected to be around 100. 
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48 S2: Experimental design 

49 Two experiments were design (haemolymph analysis and survival monitoring; see 

50 diagram below). Each experiment was replicated in several independent experimental replicates 

51 (Bloc 1, Bloc 2, Bloc 3, Bloc 4 etc.) themselves divided into independent experimental series 

52 (S1, S2, S3, S4 etc.) Each series correspond to a single priming procedure performed on the 

53 three treatments (non-primed, LB-primed and S. enterica-primed) for one time point (1 d, 7 d 

54 or 15 d, the time elapsed between priming procedure and sampling or second infection). For the 

55 haemolymph analysis, all time points are distributed equally in a same bloc. For the survival 

56 monitoring, each bloc corresponds to a single replicated time point, preventing to distinguish 

57 correctly the effect of “bloc” to the effect of “time point” in our statistical models. Because of 

58 the correlation between blocs and time points, we added and kept the “time point” factor as 

59 fixed effect, in order to adjust the attributed part of the variance and separate the comparisons 

60 of priming treatments per time point (1 d, 7 d or 15 d). We also corrected the non-independence 

61 of the samples within a same series by adding a random factor “series” nested in “blocs”. 

62
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