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ABSTRACT
Recent phylogeographic studies along the coastline of southern Africa have uncovered
cryptic diversity in several coastal invertebrates, including direct developing crustaceans
in the superorder Peracarida. These findings indicating the possible existence of
additional cryptic diversity in other yet to be studied peracarids, particularly those
known to harbor said cryptic diversity in other regions of theworld. Isopods in the genus
Ligia are one such taxon. They inhabit patchy rocky beaches, are direct developers, avoid
the open water, and exhibit other biological traits that severely constrain their dispersal
potential (e.g., poor desiccation resistance). These traits are thought to have led to long-
term isolation of populations, and allopatric diversification in Ligia species around the
world; however, Ligia species in southern Africa, where three endemic Ligia species
of uncertain validity are known to exist, remain unstudied to date. In this study, we
used mitochondrial and nuclear markers to characterize Ligia collected in 18 localities
from Namibia to the KwaZulu-Natal region of South Africa. We report the presence of
cryptic lineages within Ligia species in the region that suggest the need for taxonomic
reevaluation of these isopod species.

Subjects Biodiversity, Biogeography, Evolutionary Studies, Marine Biology, Zoology
Keywords South Africa biogeography, Oniscidea, Cryptic species, Ligiidae, Intertidal, Vicariance

INTRODUCTION
Recent phylogeographic work on coastal invertebrate species has led to the discovery of
cryptic diversity in poorly dispersing species around the world (e.g., Chan, Tsang & Chu,
2007;Hurtado, Lee & Mateos, 2013; Radulovici, Sainte-Marie & Dufresne, 2009; Santamaria
et al., 2017; Santamaria et al., 2016; Santamaria, Mateos & Hurtado, 2014; Santamaria
et al., 2013; Varela & Haye, 2012). In South Africa, cryptic diversity has been reported
for several coastal invertebrate taxa (Evans et al., 2004; Mmonwa et al., 2015; Reynolds,
Matthee & Von der Heyden, 2014; Ridgway et al., 2001; Teske et al., 2007; Zardi et al., 2007),
including direct-developing crustacean peracarids. Teske et al. (2006) reported the presence
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of multiple deeply-divergent lineages for Exosphaeroma hylecoetes and Iphinoe truncata,
with Baldanzi et al. (2016) reporting the presence of multiple evolutionary lineages within
the amphipod Talorchestia capensis. These reports suggest other coastal peracarids in the
region may harbor previously unreported cryptic diversity, underscoring the need for
molecular characterizations of such organisms, so to better understand and delineate the
biodiversity of coastal environments in southern Africa.

Coastal isopods of the genus Ligia have been shown to harbor cryptic diversity in
other regions of the world. Although found along rocky coastlines throughout the world
(Schmalfuss, 2003), the biology of these supralittoral isopods is marked by traits that
severely limit their dispersal potential. As all other peracarids, they lack planktonic larvae
with embryos developing inside a marsupium on females until hatching as fully-formed
juveniles (termed manca). Adult Ligia isopods avoid open water and quickly attempt to
regain the shore when submerged (Barnes, 1932; Barnes, 1935), exhibit low desiccation and
submergence resistance (Barnes, 1936; Barnes, 1938; Todd, 1963; Tsai, Dai & Chen, 1997;
Tsai, Dai & Chen, 1998; Zhang et al., 2016) and poor locomotion on non-rocky substrates.
These traits limit both their overland and overwater dispersal potential, which may lead to
severely restricted gene flow between populations, long term isolation, and in turn allopatric
and potentially cryptic diversification, as reported for L. hawaiensis (Santamaria et al.,
2013; Taiti et al., 2003), L. exotica and L. cinerascens (Hurtado et al., 2018; Yin et al., 2013),
L. occidentalis (Hurtado, Mateos & Santamaria, 2010), L. baudiniana (Santamaria, Mateos
& Hurtado, 2014), L. oceanica (Raupach et al., 2014), as well L. vitiensis and L. dentipes
(Santamaria et al., 2017). Thus, molecular characterization of yet to be studied Ligia
species may also uncover evidence suggestive of cryptic diversification.

One such case is that of Ligia populations along the southern Africa coastline. Currently,
four valid Ligia species are thought to inhabit the region: the endemic L. dilatata, L.
glabrata, and L. natalensis, and the introduced L. exotica, which to date is formally reported
only from Durban harbour (Barnard, 1932). Of the endemic species, L. dilatata and
L. glabrata were first described by Brandt (1833) from specimens collected in the ‘Cape
of Good Hope’ (a vague term used by early researchers to describe any location in the
then Cape Colony). The validity of these species was doubted by Collinge (1920), who
suggested L. glabrata to be an immature form of L. dilatata. In the same work, Collinge
described L. natalensis from specimens collected from Umhlali and Winklespruit Beach
along the more subtropical coastline of KwaZulu-Natal. Later inspections by Jackson
(1922) and Barnard (1932) determined all three species to be valid, based on differences
in overall body shape, the shape of the stylet of the 2nd pleopod in males, and the length
of the 2nd antenna. The first two of these traits have subsequently been shown to not
be useful character for distinguishing amongst Ligia cryptic lineages (Santamaria et al.,
2016; Santamaria, Mateos & Hurtado, 2014; Santamaria et al., 2013; Taiti et al., 2003), with
similarities amongst Ligia species in southern Africa for these traits (see Fig. 2 of Barnard,
1932) making it unclear whether Ligia species in the region are valid taxa, or whether they
harbor any cryptic diversity.

In this study, we aim to determine: (1) whether the currently accepted species of Ligia
from South Africa represent reciprocally monophyletic clades, (2) whether these species
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harbor deeply divergent lineages that may represent cryptic species in need of taxonomic
evaluation, and (3) the large scale distributional patterns of each of the Ligia species and
lineages across southern Africa. To this end, we use characterized individuals collected
from 18 localities spanning the area between Namibia and KwaZulu-Natal, using both
mitochondrial and nuclear markers.

MATERIALS AND METHODS
Field sampling, preservation, and identification
We hand-collected Ligia individuals from 18 localities around the coastline of southern
Africa between 2014–2017. Detailed locality information is provided in Table 1. All samples
were field-preserved and stored in 70% ethanol until molecular analyses were carried
out. In the laboratory, specimens were identified to species by visual inspection of key
characteristics (e.g., appendix masculina of the second pleopod of males) and comparing
these traits to those reported for the various recognized Ligia species in southern Africa
(Barnard, 1932; Ferrara & Taiti, 1979). Field collections were carried out under Scientific
Collection Permit RES2017/53 issued by the South African Department of Environmental
Affairs.

Molecular laboratory methods
We extracted total genomic DNA from several pleopods for 2–10 Ligia individuals per
location using theQuick g-DNAMiniPrepKit (ZymoResearch, Irvine, CA,USA), following
standard protocol instructions. For each individual, we PCR-amplified a 658-bp fragment of
the Cytochrome Oxidase I (COI) mitochondrial gene using the LCO-1490 and HCO-2198
primers and previously published conditions (Folmer et al., 1994). We also PCR-amplified
a 661-bp region of the sodium-potassium ATPase alpha subunit (NaK) gene using the
NaKFb and NaKR2 primers and standard conditions (Tsang et al., 2008). Positive PCR
amplifications were determined by visualizing PCR products on 1% agarose gels stained
using SYBR Safe (Invitrogen, Carlsbad, CA, USA). Positive amplicons were sequenced at
the University of Arizona Genetics Core, with sequences and assembled and edited (i.e.,
primer removal) using Geneious R8.0.5.

Sequence alignments, phylogenetic analyses, and estimation of
molecular divergence
The mitochondrial COI and nuclear NaK sequence datasets were aligned independently
using the MAFFT server (Katoh & Standley, 2013) under standard settings for nucleotide
sequences. Visual inspection of the resulting alignment produced no evidence suggestive of
pseudogenes (e.g., stop codons, high rates of amino acid substitutions) or indels. Due to the
limited phylogenetic signal within the NaK dataset, we did not concatenate the two datasets
and carried out phylogenetic searches only on the COI resulting alignment. Relationships
within the NaK dataset were estimated using haplotype network reconstructions.

We carried out preliminary phylogenetic analyses incorporating sequences produced in
this study, as well as all publicly available COI sequences for other Ligia species and two
Ligidium species (Ligidium germanicum and Ligidium hypnorum; COI accession numbers
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Table 1 Localities included and corresponding GenBank Accession Numbers for all genetic markers used, latitude, and longitude.Map labels
correspond with other figures and tables.

Species Locality Map
Label

N a Nh
b COI Acc. Nos. NaK Acc. No. Latitude Longitude

L. glabrata Luderitz, Namibia A1 2 1 MH173093 MH173152 26◦39′47′′S 15◦04′55′′E
L. glabrata Jacobsbaai, South Africa A2 3 1 MH173096 N/A 32◦58′26′′S 17◦53′06′′E
L. glabrata Ganzekraal, South Africa A3 5 2 MH173094, MH173095 N/A 33◦31′18′′S 18◦19′19′′E
L. dilatata Kommetjie, South Africa B1 4 3 MH173097, MH173098,

MH173099
N/A 34◦08′17′′S 18◦19′24′′E

L. dilatata Koelbaai, South Africa B2 4 2 MH173100, MH173101 MH173153 34◦14′51′′S 18◦51′15′′E
L. dilatata Onrus, South Africa B3 5 4 MH173103, MH173104,

MH173105, MH173106
N/A 34◦25′13′′S 19◦10′35′′E

L. dilatata Gansbaai, South Africa B4 5 2 MH173102, MH173107 N/A 34◦35′10′′S 19◦20′34′′E
L. dilatata L’Agulhas, South Africa B5 10 4 MH173108, MH173109,

MH173110, MH173111
N/A 34◦49′26′′S 20◦01′01′′E

L. natalensis Knysna, South Africa D1 5 4c MH173126, MH173127,
MH173128

N/A 34◦02′16′′S 23◦01′09′′E

L. natalensis Skoenmakerskop, South Africa C1 3 3 MH173143, MH173144,
MH173145

N/A 34◦02′45′′S 25◦38′01′′E

L. natalensis Summerstrand, Port Elizabeth,
South Africa

C2 8 3 MH173142, MH173146,
MH173147

MH173154 33◦59′01′′S 25◦40′16′′E

L. natalensis Boesmansriviermond, South Africa E1 4 2c MH173112c, MH173119 N/A 33◦40′51′′S 26◦39′20′′E
L. natalensis Kenton-on-Sea, South Africa E2 10 7 MH173113, MH173114,

MH173115, MH173116,
MH173117, MH173118,
MH173141

N/A 33◦41′41′′S 26◦39′54′′E

L. natalensis Kidd’s Beach, South Africa E3 10 5 MH173120, MH173122,
MH173123, MH173124,
MH173125

MH173155 33◦08′50′′S 27◦42′10′′E

L. natalensis East London Harbor, South Africa F1 5 4 MH173148, MH173149,
MH173150, MH173151

N/A 33◦01′28′′S 27◦53′26′′E

L. natalensis Salmon Bay, Port Edward,
South Africa

D2 9 6 MH173121, MH173129,
MH173130, MH173131,
MH173132, MH173134

N/A 31◦03′43′′S 30◦13′23′′E

L. natalensis Ivy Beach, Port Edward, South Africa D3 9 1 MH173133 N/A 31◦01′44′′S 30◦14′37′′E
L. natalensis Uvongo Beach, Margate, South Africa D4 10 6 MH173135, MH173136,

MH173137, MH173138,
MH173139, MH173140

N/A 30◦49′59′′S 30◦23′56′′E

Notes.
aNumber of individuals sampled in location.
bNumber of unique COI haplotypes in location.
cDenotes haplotype shared by individuals in two populations.

DQ182795 and DQ182781, respectively) so as to identify the most appropriate outgroup
for our phylogenetic analyses. These preliminary analyses recovered the monophyly of
southern Africa Ligia species; however, relationships amongst the ingroup were poorly
resolved. As a result, we carried out our phylogenetic excluding outgroups and opting
instead for rooting using a midpoint-root approach.

Prior to phylogenetic searchers, we determined themost appropriatemodel of nucleotide
evolution for our COI dataset using the Modeltest script (Posada & Crandall, 2001) as
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implemented by FindModel (http://hiv.lanl.gov/content/sequence/findmodel/findmodel.
html). Model selection was made by comparing the likelihood scores of all 28 models
available based on an initialWeighbor tree.We then carried out phylogenetic searches under
both Maximum Likelihood and Bayesian inference approaches. Maximum Likelihood
phylogenetic searches were carried out in RAxML v8.1.2 (Stamatakis, 2014; Stamatakis,
Hoover & Rougemont, 2008) and consisted of 1,000 thorough bootstrap replicates, followed
by a thorough ML search under the GTR +0 model. We produced a majority-rule
consensus tree of all bootstrap replicates using the Sumtrees command of DendroPy v4.1.0
(Sukumaran & Holder, 2010).

We carried out Bayesian phylogenetic searches in MrBayes v3.2.5 (Ronquist &
Huelsenbeck, 2003) and Phycas v2.2.0 (Lewis, Holder & Swofford, 2015). Searches in
MrBayes consisted of two simultaneous searches of four chains, each sampled every
5,000th tree, while Phycas searches consisted of a single search, sampled every 50th tree. All
Bayesian searches were carried out under the GTR +0 model. For each Bayesian analysis,
we estimated node support values by discarding all samples prior to stationarity (10–25% of
sampled trees) and calculating a majority-rule consensus tree using the Sumtrees command
of DendroPy v4.1.0 (Sukumaran & Holder, 2010).

Lastly, we usedMEGA v7.0.7 (Kumar, Stecher & Tamura, 2016) to estimate COI Kimura
2-Parameter distances (K2P) within and amongst sampled localities and major lineages
observed in the above phylogenetic reconstructions.

Haplotype network reconstructions
Weused the ancestral parsimony algorithmproposed byTempleton, Crandall & Sing (1992)
as implemented in PopART v1.7 (Leigh & Bryant, 2015) to visualize relationships between
all COI haplotypes recovered in this study.We estimated branch connections using the TCS
network option (Clement, Posada & Crandall, 2000) of PopArt with networks considered
separate if connections between them exceeded 33 steps (i.e., a 95% connection limit). We
repeated this approach to visualize the relationships amongst NaK alleles.

Molecular species delimitation analyses
We implemented molecular species delimitation analyses (hereafter MSDAs) using ABGD
(Puillandre et al., 2012). This approach identifies putative species by producing pairwise
differences amongst haplotypic data and identifying a putative inter-species gap in the
distance distribution. Individual haplotypes are assigned to groups if their genetic distances
are less than the proposed gap. Analyses were carried out on the COI data for each
Ligia species separately using the ABGD server (http://wwwabi.snv.jussieu.fr/public/abgd/
abgdweb.html) under standard settings, with the exception of the relative gap width (set
to 1.0) and the distance setting (‘‘Kimura (K80) TS/TV’’ = 2.0).

RESULTS
We successfully amplified 658-bp of the COI mtDNA gene for 111 Ligia individuals from
18 localities across southern Africa (Fig. 1): 10 that were identified as L. glabrata, 28 as
L. dilatata, and 73 as L. natalensis. We recovered a total of 59 COI haplotypes, which
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Figure 1 Sampled localities across southern Africa. Locations are as follows: (A1) Luderitz, (A2)
Jacobsbaai, (A3) Ganzekraal, (B1) Kommetjie, (B2) Koeelbai, (B3) Onrus, (B4) Gansbaai, (B5) L’Agulhas,
(C1) Skoenmakerskop, (C2) Summerstrand, (D1) Knysna, (E1, E2) Boesmansriviermond and Kenton-
on-Sea, (E3) Kidd’s Beach, (F1) East London Harbor, (D2–D3) Salmon Bay and Ivy Beach, (D4) Uvongo
Beach. Colors and labels correspond to those used in all other figures and tables. Map is edited from a
Wikimedia figure by Hosie published under a CC license: https://commons.wikimedia.org/wiki/File:
SubSaharanAfrica.svg.

Full-size DOI: 10.7717/peerj.4658/fig-1

were separated by 162 parsimony informative sites. All new COI haplotypes and NaK
alleles recovered in this study have been deposited in GenBank under accession numbers
MH173093–MH173155 (Table 1).

Phylogenetic results
We observed a basal split between two well supported clusters of highly divergent clades
in all analyses: a ‘‘Western’’ cluster (reds and greens in all figures; Bootstrap support (BS):
100; Maximum Posterior Probability (MPP): 100%; Fig. 2) with a geographic distribution
from Namibia to the Cape Agulhas region, and an ‘‘Eastern’’ cluster (blues, yellows, and
purples in all figures; Bootstrap support (BS): 100; Maximum Posterior Probability (MPP):
100%) that was distributed from Knysna, on the south coast of South Africa (hereafter
SA), to the KwaZulu-Natal region of SA. Each of these clusters was composed of two or
more highly divergent clades (clades A–F ; amongst clade COI K2P divergences 3.1–17.2%,
Table 2).

COI haplotypes assigned to the ‘‘Western’’ cluster were further divided into two highly
divergent clades (amongst clade COI K2P divergences: 8.5–10.7%, Table 2). Clade A (reds
in all figures; BS: 93%;MPP: 100%) included all Ligia individuals sampled in Namibia (A1),
as well as from two locations in SA: Jacob’s Bay (A2) and Ganzekraal (A3) and corresponds
to the species morphologically identified as L. glabrata. Within this clade, we observed three
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Figure 2 Phylogenetic patterns of Ligia from southern Africa. We observed three monophyletic groups
that largely match currently valid species of Ligia in southern Africa; however, additional genetic diver-
gence was observed within some of these groups. Six major clades were observed (Clade A: reds; Clade B:
greens; Clade C: yellows; Clade D: blues; Clade E : purples; Clade F: cyan) containing seven moderately to
highly divergent lineages. Most of the lineages contained haplotypes from geographically nearby locali-
ties. Clades and lineages exhibit mostly disjunct geographic distributions matching biogeographic regions;
however, exceptions exist. Values above branches represent support values for the corresponding branch
(top value: Bootstrap Support; bottom: Maximum Posterior Probablities; *: 100 in all analyses).

Full-size DOI: 10.7717/peerj.4658/fig-2

lineages that correspond with the sampled localities and that were moderately divergent
from each other (COI K2P: 5.1–5.6%; Table 3). The relationships between these lineages
were not well supported; however, our analyses suggest a sister-taxon relationship between
the lineage found in Ligia from Luderitz, Namibia (A1) and that found in Jacob’s Bay (A2)
(BS, MPP < 60). The second clade part of the ‘‘Western’’ cluster, Clade B (greens in all
figures; BS: 100;MPP: 100), comprised all Ligia individuals collected from localities between
the Cape of Good Hope and Cape Agulhas (B1–B5) and morphologically corresponds to
the species L. dilatata. Clade B, contrary to the Clade A, does not appear to be composed of
any further divergent lineages and within-clade divergences within it were low (COI K2P:
0.0–1.2%; Table 2).

The ‘‘Eastern’’ cluster, which contained all Ligia collected from Knysna to the KwaZulu-
Natal region of South Africa, was composed of three highly divergent and well supported
monophyletic clades (C–E ; COI K2P 3.1–12.2%; Table 2) which morphologically
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Table 2 Pairwise amongst clade COI K2P divergences. Ranges represent minimum and maximum val-
ues obtained when comparing individuals amongst clades, with values in parenthesis representing average
divergences between members of various clades.

Clade A Clade B Clade C Clade D Clade E Clade F

Clade A 0.0–5.6%
(3.7%)

Clade B 8.5–10.7%
(9.4%)

0.0–1.2%
(0.5%)

Clade C 13.2–15.3%
(14.1%)

13.3–14.6%
(13.8%)

0.0–1.1%
(0.4%)

Clade D 14.9–16.8%
(15.7%)

15.4–17.0%
(16.2%)

10.3–12.0%
(11.2%)

0.0–1.9%
(0.7%)

Clade E 14.3–17.2%
(15.4%)

15.1–16.6%
(15.6%)

9.4–12.1%
(10.0%)

3.5–6.3%
(4.5%)

0.0%–5.4%
(1.3%)

Clade F 15.1–16.9%
(15.6%)

15.5–16.5%
(15.9%)

11.0–12.2%
(11.5%)

3.6–6.4%
(4.1%)

3.1%–6.4%
(3.8%)

0.0–0.6%
(0.4%)

Table 3 Pairwise divergences for localities/lineages from Clade A as determined by COI K2P. Ranges
represent minimum and maximum values obtained when comparing individuals from different sampling
localities, with values in parenthesis representing average divergences between members of said localities.

A1 A2 A3

A1 0.0–0. 0%
(0.0%)

A2 5.6–5.6%
(5.6%)

0.0–0. 0%
(0.0%)

A3 5.1–5.2%
(5.2%)

5.2%–5.4%
(5.2%)

0.0–0.2%
(0.1%)

correspond to the established species L. natalensis. Within this cluster, clades D, E, and F
(blues and purples in all figures) are placed in a well-supported clade (BS: 82; MPP: 100)
with Clade C (yellows in all figures) in turn sister to this group. Relationships between D,
E, and F are not well resolved. Clade C containing all Ligia individuals collected in the
Port Elizabeth area (C1–2), was highly supported across analyses (BS: 86; MPP: 98–100),
and exhibited low within-clade divergences (COI K2P 0.0–1.1%, Table 2). This clade
was highly divergent from all other clades in the ‘‘Eastern’’ cluster (COI K2P 9.4–12.2%;
Table 2) and appears genetically distinct enough to be considered a separate and previously
unrecognized species within the natalensis group. Clade D (BS: 86; MPP: 99–100) includes
most COI haplotypes obtained from Ligia individuals collected in Knysna (D1) and
the Port Edward area (D2–4). Within clade divergence for Clade D was low (COI K2P
0.0–1.9%, Table 2). Clade E contained all COI haplotypes recovered from individuals from
the Kenton-on-Sea area (E1–2), those from Kidd’s Beach (E3), as well as one each from
Knysna (D1) and Salmon Bay (D2). Although this clade was not strongly supported by
any phylogenetic analyses (BS, MPP < 50), we denote it as a separate clade given the very
low levels of divergence between all haplotypes in it (COI K2P average ∼1.3%; Table 2),
moderate amongst clade divergence when compared to haplotypes from clades D and F
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(COI K2P 3.5%–6.4%; Table 2), and the results of haplotype network reconstructions
(Fig. 3). Lastly, the well supported Clade F (cyan in all figures, BS: 92; MPP: 99–100)
contained all individuals collected at the East London Harbor (F1) and exhibited low levels
of within clade divergence (COI K2P 0.0–0.6%; Table 2).

COI haplotype network reconstructions
The results of our COI haplotype network reconstructions (Fig. 3) largely match
patterns produced by our phylogenetic analyses, as we recovered four separate networks
(i.e., connections of <95%) largely corresponding to clades observed in phylogenetic
reconstructions.

Network I (Fig. 3A) contained four haplotypes recovered from Ligia individuals from
Luderitz (A1), Jacob’s Bay (A2) and Ganzekraal (A3). In Luderitz, we recovered a single
haplotype that diverged by 32–33 steps from haplotypes recovered from Ganzekraal,
which in turn diverged by 33–34 steps from the single haplotype recovered in Jacob’s
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Bay. This network closely parallels the patterns observed for Clade A in our phylogenetic
reconstructions and contains all individuals morphologically identified as L. glabrata.

Network II (Fig. 3B) contained all 15 haplotypes recovered from Ligia collected between
the Cape of Good Hope and Cape Agulhas (B1–B5), closely matches Clade B, and include
all individuals identified as L. dilatata. Divergences in this network were low, with most
connections between haplotypes being only 1–2 steps and the maximum connection
between haplotypes being 10 steps. Despite such short connections, the network suggests
some isolation between localities, as no sharing of haplotypes is apparent. Furthermore,
haplotypes recovered within a single location appear to be much more similar (1–2 steps)
than to those found at other locations in the region (∼4 steps).

Network III (Fig. 3C) consisted of six haplotypes recovered from Ligia collected in
localities near Port Elizabeth (C1–2) and corresponds with Clade C from our phylogenetic
findings. As observed in Network II, connections between haplotypes are very short, as
most haplotypes are connected by <3 steps and the maximum span between haplotypes is
seven steps. Morphologically, all members of this network were identified as L. natalensis.

Lastly, Network IV (Fig. 3D) contained 34 haplotypes divided into three sub-networks
separated by <18 steps. These sub-networks appear to correspond with clades D–F from
our phylogenetic results and include all other L. natalensis individuals. One sub-network
(blues in Fig. 3) contained all but two haplotypes from localities around Knysna (D1) and
Port Edward (D2–4). Another sub-network (purples in Fig. 3) contained all the haplotypes
collected in the localities of Kenton-on-Sea (E1–2) and Kidd’s Beach (E3). Intermediate to
these two subnetworks is a small subnetwork of four haplotypes recovered from individuals
collected in East London (F1; cyan in Fig. 3). In general, haplotypes collected from the same
locality are much more similar to each other (<6 steps) than those from other localities
(>10 steps), with two exceptions. A COI haplotype recovered from a Ligia individual
collected in Salmon Bay (D2) was much more similar to those found in Kidd’s Beach
(E3; 4–9 steps) than others from its own location (>29 steps). This haplotype was not
observed in any other Ligia individual from any other locality. The other exception was a
COI haplotype collected from an individual collected in Knysna (D1) that was shared with
individuals from the Kenton-on-Sea area (E1–2). These patterns are congruent with the
amongst-locality divergences where these lineages were found (Tables 4 and 5).

NaK haplotype network reconstructions
NaK haplotype network reconstructions (Fig. 4) were congruent with the above results;
however, they produced much simpler patterns. We uncovered four NaK alleles separated
by 1–10 steps: one allele shared by all surveyed individuals within Clade A (L. glabrata),
one shared by all individuals within Clade B (L. dilatata), and two alleles from individuals
from within the ‘‘Eastern’’ Cluster (L. natalensis). These latter two alleles were much more
similar to each other (1 step) than to the other two recovered alleles (7–9 steps). The alleles
found in the other clades were also highly divergent from those found in other clades, with
the Clade A allele separated by 5–10 steps from other alleles and the one found in Clade B
being separated by 5–9 steps. These patterns are largely concordant with those produced
by mitochondrial analyses when considering the low levels of variation of this marker.
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Table 4 Within Clade divergences for populations from Clade D as determined by COI K2P. Ranges
represent minimum and maximum values obtained when comparing individuals from different sampling
localities, with values in parenthesis representing average divergences between members of said localities.

D1 D2 D3 D4

D1 0.0–4.6%
(2.0%)

D2 0.8–4.8%
(1.9%)

0.0–4.8%
(1.2%)

D3 0.8–4.1%
(1.6%)

0.3–4.6%
(0.9%)

0.0–0.0%
(0.0%)

D4 0.9–4.1%
(1.8%)

0.5–4.3%
(1.2%)

0.8–1.2%
(1.0%)

0.0–0.8%
(0.4%)

Table 5 Within Clade divergences for populations from Clade E as determined by COI K2P. Ranges
represent minimum and maximum values obtained when comparing individuals from different sampling
localities, with values in parenthesis representing average divergences between members of said localities.

E1 E2 E3

E1 0.0–0.5%
(0.3%)

E2 0.2–4.7%
(0.9%)

0.0–4.9%
(1.2%)

E3 0.8–1.7%
(1.2%)

0.8–5.4%
(1.8%)

0.0–1.4%
(0.8%)

Molecular species delimitation analyses
MSDAs suggested the presence of cryptic species for all three nominal Ligia species in the
region. ABGD identified three putative species for L. glabrata individuals regardless of the
prior maximal distance (i.e., barcode gap) assumed, with groups corresponding with the
locations in which these individuals were found (Group 1: A1, Group 2: A2, Group 3:
A3). For L. dilatata two groups were identified (Group 1: B1, Group 2: B2–5); however,
this split was based on a prior maximal distance of only 0.001668. Another two putative
species were identified for L. natalensis individuals, with those from C1 and C2 placed
in Group 1, and those from D1–4, E1–3, and F1 placed in Group 2. These results were
based on prior maximal distances of 0.02154 and above. Exclusion of the Port Elizabeth
individuals (C1–2) from ABGD analyses did not produce any additional groupings within
the L. natalensis individuals.

DISCUSSION
Three currently valid Ligia species are thought to be endemic to the southernAfrica coastline
(Schmalfuss, 2003); however, results reported herein suggest this may underrepresent the
biodiversity of these isopods in the region. Although phylogenetic reconstructions place
individuals putatively identified to nominal southern Africa species in well-supported and
highly divergent reciprocally monophyletic clades, the clades composed of individuals
putatively identified as L. glabrata (Clade A) and L. natalensis (the ‘‘Eastern’’ cluster) are
each comprised of several moderately to highly divergent lineages. For instance, within
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the ‘‘Eastern’’ cluster we observe a deep split between Clade C and all other lineages in the
cluster, with divergences amongst these lineages matching and/or exceeding those seen for
pairwise comparisons between L. glabrata and L. dilatata (8.5–10.7% COI K2P, Table 2),
as well as those previously reported for other Ligia species pairs, such as L. perkinsi/L.
hawaiensis (11.9–16.7% COI K2P; Santamaria et al., 2013). We also report moderate levels
of divergence amongst the other lineages within the ‘‘Eastern’’ cluster (i.e.,D, E, and F; COI
K2P 3.1–6.4%; Table 2), as well as amongst the three highly divergent and geographically
disjunct lineages recovered within Clade A (COI K2P 5.1–5.6%; Table 3). The divergences
observed amongst these lineages exceed intra-species levels of divergence reported for
invertebrate species (Hebert et al., 2003) and match those reported for other potential
cryptic species in other Ligia isopods (Hurtado, Lee & Mateos, 2013; Hurtado et al., 2014;
Hurtado, Mateos & Santamaria, 2010; Santamaria, Mateos & Hurtado, 2014; Santamaria et
al., 2013; Xavier et al., 2012). Relatedly, ABGD analyses suggest the presence of 2–3 cryptic
species in each of the three nominal Ligia species in the region, as suggested by the presence
of a barcode gap amongst individuals from different locations.

Past research on Ligia from other regions suggest that the currently valid Ligia species in
southern Africa may be cryptic species complexes in need of taxonomic revision. Hurtado,
Mateos & Santamaria (2010) reported the presence of seven major clades (amongst clade
divergences: 7.3–29.9% COI K2P) in the area from Central California to Central Mexico,
an area thought to harbor the single endemic species L. occidentalis. Reciprocal crosses
between localities now known to harbor highly divergent populations done by McGill
(1978); however, failed to produce viable offspring, suggesting that some of the lineages
reported by Hurtado, Mateos & Santamaria (2010) represent true biological species. A
possible cryptic species complex has also been reported from the Hawaiian archipelago,
where Santamaria et al. (2013) found evidence suggesting the lone intertidal Ligia species
endemic to the islands is a paraphyletic complex of at least four highly-divergent lineages
(amongst clade divergences: 10.5–16.7% COI K2P). These previous findings, combined
with those reported herein, thus suggest the need for taxonomic evaluations of Ligia
isopods from southern Africa with our MSDAs results serving as taxonomic hypotheses
(e.g., Boissin et al., 2017).

Any future taxonomic work would be enhanced by the inclusion of additional
populations along the southern Africa coastline. Although our sampling spans∼2,400-km
of coastline from Namibia to South Africa, three large coverage gaps exist in our sampling:
∼750-km along the west coast between Jacobsbaai and Luderitz (Namibia), ∼370-km
along the south coast between Cape Agulhas and Knysna, and the section of the east coast
from Durban northwards to the Mozambique border. Sampling these areas may help
determine whether yet to be sampled Ligia populations harbor additional cryptic lineages
and elucidate the geographic distribution of Ligia species and lineages in the region. The
latter is of importance, as the distributional patterns reported herein show some slight
departures from the reported distributions for Ligia species in southern Africa. According
to Ferrara & Taiti (1979) and Schmalfuss (2003), L. glabrata and L. dilatata both occur from
Namibia (Luderitzbucht) to the Cape Peninsula (CP), with the former extending its range
to west shores of the CP andDyer Island and the latter extending to the east shores of the CP
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and Dassen Island. Our results; however, suggest that the distribution of L. glabrata sensu
lato extends from Namibia to north of Cape Town, with L. dilatata s. l. occurring from
the area surrounding Cape Town to Cape Agulhas. Meanwhile, L. natalensis is reported
to occur from Victoria Bay to KwaZulu-Natal (Ferrara & Taiti, 1979; Schmalfuss, 2003),
which is congruent with our findings.

Aswe lack the fine-scale sample coverage needed to confidently determine the geographic
extent of species and lineages herein reported, the distributional patterns described above
should be seen as preliminary broad-scale descriptions in need of further validation. As
our sampling efforts consisted of a single visit to each site, future sampling should include
not only new localities but also the sampling of different microhabitats or tidal levels at
localities included herein. This will not only help determine the geographic ranges of Ligia
lineages and species in the region, but also help determine whether lineages and species are
sympatric or truly allopatric.

CONCLUSIONS
By using morphological identifications as well as nuclear and mitochondrial markers to
characterize 18 Ligia populations from southern Africa, we report patterns that suggest
the biodiversity of these isopods is under-reported in this region. Our findings are in line
with reports of allopatric genetic differentiation across Ligia species from other regions
(Eberl et al., 2013; Hurtado, Mateos & Santamaria, 2010; Hurtado et al., 2018; Raupach et
al., 2014; Santamaria et al., 2017; Santamaria, Mateos & Hurtado, 2014; Santamaria et al.,
2013; Taiti et al., 2003; Yin et al., 2013), as well as reports of cryptic diversity within other
coastal invertebrates along the coastline of South Africa (Baldanzi et al., 2016; Evans et
al., 2004; Ridgway et al., 2001; Teske et al., 2006; Teske et al., 2007; Zardi et al., 2007). The
presence of several cryptic lineages within nominal Ligia species in southern Africa suggest
the possible presence of putative cryptic species in the area, underscoring the need of
taxonomic evaluation to determine whether these lineages are indeed valid species. The
patterns reported herein may thus serve as taxonomic hypothesis for such taxonomic work.
Further work may also help fully discern the distributional patterns for Ligia species and
lineages in the region.
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