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Abstract. In this paper, we extend a bio-inspired algorithm called the porcellio scaber algorithm (PSA) to solve

constrained optimization problems, including a constrained mixed discrete-continuous nonlinear optimization

problem. Our extensive experiment results based on benchmark optimization problems show that the PSA has a

better performance than many existing methods or algorithms. The results indicate that the PSA is a promising

algorithm for constrained optimization.

1 Introduction

Modern optimization algorithms may be roughly classi-

fied into deterministic optimization algorithms [1–5] and

stochastic ones. The former is theoretically sound for

well-posed problems but not efficient for complicated

problems. For example, when it comes to nonconvex

or large-scale optimization problems, deterministic algo-

rithms may not be a good tool to obtain a globally optimal

solution within a reasonable time due to the high complex-

ity of the problem. Meanwhile, while stochastic ones may

not have a strong theoretical basis, they are efficient in en-

gineering applications and have become popular in recent

years due to their capability of efficiently solving complex

optimization problems, including NP-hard problems such

as the travelling salesman problem. Bio-inspired algo-

rithms take an important role in stochastic algorithms for

optimization. These algorithms are designed based on the

observations of animal behaviors. For example, one of the

well known bio-inspired algorithm called particle swarm

optimization initially proposed by Kennedy and Eberhart

[6] is inspired by the social foraging behavior of some an-

imals such as the flocking behavior of birds.

There are some widely used benchmark problems in

the field of stochastic optimization. The pressure vessel

design optimization problem is an important benchmark

problem in structural engineering optimization [7]. The

problem is a constrained mixed discrete-continuous non-

linear optimization problem. In recent years, many bio-

inspired algorithms have been proposed to solve the prob-

lem [8–11]. The widely used benchmark problems also in-

clude a nonlinear optimization problem proposed by Him-

melblau [12].
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Recently, a novel bio-inspired algorithm called the

porcellio scaber algorithm (PSA) has been proposed by

Zhang and Li [13], which is inspired by two behaviors of

porcellio scaber. In this paper, we extend the result in [13]

to solve constrained optimization problems. As the origi-

nal algorithm proposed in [13] deals with the case without

constraints, we provide some improvements for the origi-

nal PSA so as to make it capable of solving constrained op-

timization problems. Then, we compare the corresponding

experiment results with reported ones for the aforemen-

tioned benchmark problems as case studies. Our extensive

experiment results show that the PSA has much better per-

formance in solving optimization problems than many ex-

isting algorithms. Before ending this introductory section,

the main contributions of this paper are listed as follows:

1)We extend the PSA to solve constrained optimization

problems, including the constrained mixed discrete-

continuous nonlinear optimization problem.

2)We show that the PSA is better than many other exist-

ing algorithms in solving constrained optimization prob-

lems by extensive numerical experiments.

2 Problem Formulation

The constrained optimization problem (COP) considered

in this paper is presented as follows:

minimize f̌ (x),

subject to g j(x) ≤ 0,

li ≤ xi ≤ ui,

(1)

with i = 1, 2, · · · , d and j = 1, 2, · · · ,m, where x =

[x1, x2, · · · , xd]T is a d-dimension decision vector; li and ui

are the corresponding lower bound and upper bound of the

ith decision variable; f̌ (x) : Rd → R is the cost function
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Algorithm 1 Original PSA

Cost function f (x), x = [x1, x2, · · · , xd]T

Generate initial position of porcellio scaber x0
i

(i =

1, 2, · · · ,N)

Environment condition Ex at position x is determined by

f (x)

Set weighted parameter λ for decision based on aggre-

gation and the propensity to explore novel environments

Initialize f∗ to an extremely large value

Initialize each element of vector x∗ ∈ R
d to an arbitrary

value

while k < MaxS tep do

Get the position with the best environment condition,

i.e., xb = arg minxk
j
{ f (xk

j
)} at the current time among

the group of porcellio scaber

if minxk
j
{ f (xk

j
)} < f∗ then

x∗ = xb

f∗ = minxk
j
{ f (xk

j
)}

end if

Randomly chose a direction τ = [τ1, τ2, · · · , τd]T to

detect

Detect the best environment condition min{Ex} and

worst environment condition max{Ex} at position xk
i
+

τ for i = 1 : N all N porcellio scaber

for i = 1 : N all N porcellio scaber do

Determine the difference with respect to the posi-

tion to aggregate i.e., xk
i
− arg minxk

j
{ f (xk

j
)})

Determine where to explore, i.e., pτ

Move to a new position according to (2)

end for

end while

Output x∗ and the corresponding function value f∗
Visualization

to be minimized. For the case that the problem is convex,

there are many standard algorithms to solve the problem.

However, for the case that the problem is not convex, the

problem is difficult to solve.

3 Algorithm Design

In this section, we modify the original PSA [13] and pro-

vide an improved PSA for solving COPs.

3.1 Original PSA

For the sake of understanding, the original PSA is given

in algorithm 1 [13], which aims at solving unconstrained

optimization problems of the following form:

minimize f (x),

where x is the decision vector and f is the cost function

to be minimized. The main formula of the original PSA is

given as follows [13]:

xk+1
i = xk

i − (1 − λ)(xk
i − arg min

xk
j

{ f (xk
j)}) + λpτ, (2)

where λ ∈ (0, 1), τ is a vector with each element being a

random number, and p is defined as follows:

p =
f (xk

i
+ τ) −min{ f (xk

i
+ τ)}

max{ f (xk
i
+ τ)} −min{ f (xk

i
+ τ)}

.

Evidently, the original PSA does not take constraints into

consideration. Thus, it cannot be directly used to solve

COPs.

3.2 Inequality constraint conversion

In this subsection, we provide some improvements for the

original PSA and make it capable of solving COPs. As the

original PSA focuses on solving unconstrained problem,

we first incorporate the inequality constraints g j(x) ≤ 0

( j = 1, 2, · · · ,m) into the cost function. To this end, the

penalty method is used, and a new cost function is ob-

tained as follows:

f̌ (x) = f (x) + γ

m
�

i=1

g2
i (x)h(gi(x)), (3)

where h(gi(x)) is defined as

h(gi(x)) =















1, if gi(x) > 0,

0, if gi(x) ≤ 0,

and γ ≫ 1 is the penalty parameter. By using a large

enough value of γ (e.g., 1012), unless all the inequal-

ity constraints gi(x) ≤ 0 (i = 1, 2, · · · ,m) are satisfied,

the term γ
�N

i=1 g
2
i
(x)h(gi(x)) takes a dominant role in the

cost function. On the other hand, when all the inequal-

ity constraints gi(x) ≤ 0 (i = 1, 2, · · · ,m) are satisfied,

h(gi(x)) = 0, ∀i, and thus f̌ (x) = f (x).

3.3 Addressing simple bounds

In terms of the simple bounds l j ≤ x j ≤ u j with j =

1, 2, · · · , d, they are handled via two methods. Firstly, to

satisfy the simple bounds, the initial position of each por-

cellio scaber is set via the following formula:

x0
i, j = l j + (u j − l j) × rand(0, 1) (4)

where x0
i, j

denotes the initial value of the jth variable of

the position vector of the ith (with i = 1, 2, · · · ,N) por-

cellio scaber; rand(0, 1) denotes a random number in the

region (0, 1), which can be realized by using the rand func-

tion in Matlab. The formula (4) guarantees that the initial

positions of all the porcellio scaber satisfy the the simple

bounds l j ≤ x j ≤ u j with j = 1, 2, · · · , d.

Secondly, if the positions of all the porcellio scaber are

updated according to (2) by replacing f (x) with f̌ (x) de-

fined in (3) for the constrained optimization problem (1),

then the updated values of the position vector xk
i

may vi-

olate the simple bound constraints. To handle this issue,

based on (2), a modified evolution rule is proposed as fol-

lows:

xk+1
i = PΩ(xk

i − (1 − λ)(xk
i − arg min

xk
j

{ f̌ (xk
j)}) − λpτ), (5)
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Algorithm 2 Algorithm for the evaluation of PΩ(x) with

x = [x1, x2, · · · , xd]T

for i = 1 : d do

if x1 < li then

xi = li
end if

if xi > ui then

xi = ui

end if

end for

return y = [x1, x2, · · · , xd]T

Figure 1. A diagram showing the design parameters of a pressure

vessel [14].

where λ ∈ (0, 1), τ is a vector with each element being a

random number, and

p =
f̌ (xk

i
+ τ) −min{ f̌ (xk

i
+ τ)}

max{ f̌ (xk
i
+ τ)} −min{ f̌ (xk

i
+ τ)}

.

Besides, PΩ is a projection function and make the updated

position satisfy the simple bound constraints, where Ω =

{x ∈ Rd |li ≤ xi ≤ ui, i = 1, 2 · · · , d}. The mathematical

definition of PΩ(x) is PΩ(x) = arg miny∈Ω �y − x�2 with

� · �2 denoting the Euclidean norm. The algorithm for the

evaluation of PΩ(x) is given in Algorithm 2.

3.4 PSA for COPs

Based on the above modifications, the resultant PSA for

solving COPs is given in Algorithm 3. In the following

section, we will use some benchmark problems to test the

performance of the PSA in solving COPs.

4 Case Studies

In this section, we present experiment results regarding us-

ing the PSA for solving COPs.

4.1 Case I: Pressure vessel problem

In this subsection, the pressure vessel problem is con-

sidered. The pressure vessel problem is to find a set of

four design parameters, which are demonstrated in Fig. 1,

to minimize the total cost of a pressure vessel considering

the cost of material, forming and welding [6]. The four

design parameters are the inner radius R, and the length

Algorithm 3 PSA for COPs

Cost function f̌ (x) as defined in (3), x =

[x1, x2, · · · , xd]T

Generate initial position of porcellio scaber x0
i

(i =

1, 2, · · · ,N) according to (4)

Environment condition Ex at position x is determined by

f̌ (x)

Set weighted parameter λ for decision based on aggre-

gation and the propensity to explore novel environments

Set penalty parameter γ in f̌ (x) to a large enough value

Initialize f∗ to an extremely large value

Initialize each element of vector x∗ ∈ R
d to an arbitrary

value

while k < MaxS tep do

Get the position with the best environment condition,

i.e., xb = arg minxk
j
{ f (xk

j
)} at the current time among

the group of porcellio scaber

if minxk
j
{ f (xk

j
)} < f∗ then

x∗ = xb

f∗ = minxk
j
{ f (xk

j
)}

end if

Randomly chose a direction τ = [τ1, τ2, · · · , τd]T to

detect

Detect the best environment condition min{Ex} and

worst environment condition max{Ex} at position xk
i
+

τ for i = 1 : N all N porcellio scaber

for i = 1 : N all N porcellio scaber do

Determine the difference with respect to the posi-

tion to aggregate i.e., xk
i
− arg minxk

j
{ f (xk

j
)})

Determine where to explore, i.e., pτ

Move to a new position according to (5) where

PΩ(x) is evaluated via Algorithm 2

end for

end while

Output x∗ and the corresponding function value f∗
Visualization

L of the cylindrical section, the thickness Th of the head,

the thickness Ts of the body. Note that, Ts and Th are in-

teger multiples of 0.0625 in., and R and L are continuous

variables.

Let x = [x1, x2, x3, x4]T = [Ts, Th,R, L]T. The pressure

vessel problem can be formulated as follows [14]:

minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2
3

+ 3.1661x2
1x4 + 19.84x2

1x3,

subject to g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

x1 ∈ {1, 2, 3, · · · , 99} × 0.0625,

x2 ∈ {1, 2, 3, · · · , 99} × 0.0625,

x3 ∈ [10, 200],

x4 ∈ [10, 200].
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Table 1. Comparisons of best results for the pressure vessel problem

x1 x2 x3 x4 g1(x) g2(x) g3(x) g4(x) f (x)

[9] 0.8125 0.4375 42.0984 176.6366 8.00e-11† -0.0359 -2.724e-4 -63.3634 6059.7143

[14] 0.7782 0.3846 40.3196 200.000 -3.172e-5 4.8984e-5† 1.3312† -40 5885.33

[8] 0.8125 0.4375 42.0984 176.6366 8.00e-11† -0.0359 -2.724e-4 -63.3634 6059.7143

[15] 1.125 0.625 58.2789 43.7549 -0.0002 -0.06902 -3.71629 -196.245 7198.433

[16] 1.125 0.625 48.97 106.72 -0.1799 -0.1578 97.760 -132.28 7980.894

[17] 1.125 0.625 58.1978 44.2930 -0.00178 -0.06979 -974.3 -195.707 7207.494

[18] 0.8125 0.4375 40.3239 200.0000 -0.034324 -0.05285 -27.10585 -40.0000 6288.7445

[19] 0.9375 0.5000 48.3290 112.6790 -0.0048 -0.0389 -3652.877 -127.3210 6410.3811

[20] 1.125 0.625 58.291 43.690 0.000016 -0.0689 -21.2201 -196.3100 7198.0428

[21] 0.8125 0.4375 41.9768 182.2845 -0.0023 -0.0370 -22888.07 -57.7155 6171.000

[22] 1.000 0.625 51.000 91.000 -0.0157 -0.1385 -3233.916 -149 7079.037

[23] 0.8125 0.4375 42.0870 176.7791 -2.210e-4 -0.03599 -3.51084 -63.2208 6061.1229

[24] 1 0.625 51.2519 90.9913 -1.011 -0.136 -18759.75 -149.009 7172.300

[25] 0.8125 0.4375 42.0984 176.6378 -8.8000e-7 -0.0359 -3.5586 -63.3622 6059.7258

PSA 0.8125 0.4375 42.0952 176.8095 -6.2625e-5 -0.0359 -738.7348 -63.1905 6063.2118

† means that the corresponding constraint is violated.

Algorithm 4 Algorithm for PΩ(x = [x1, x2, x3, x4]T) in the

pressure vessel problem

y1 = round(x1/0.0625)× 0.0625

if y1 < 0.0625 then

y1 = 0.0625

end if

if y1 > 99 × 0.0625 then

y1 = 99 × 0.0625

end if

y2 = round(x2/0.0625)× 0.0625

if y2 < 0.0625 then

y2 = 0.0625

end if

if y2 > 99 × 0.0625 then

y2 = 99 × 0.0625

end if

if x3 < 10 then

y3 = 10

end if

if x3 > 200 then

y3 = 200

end if

if x4 < 10 then

y4 = 10

end if

if x4 > 200 then

y4 = 200

end if

return y = [y1, y2, y3, y4]T

Evidently, this problem has a nonlinear cost function, three

linear and one nonlinear inequality constraints. Besides,

there are two discrete and two continuous design variables.

Thus, the problem is relatively complicated. As this prob-

lem is a mixed discrete-continuous optimization, the pro-

jection function PΩ(x) is slightly modified and presented

in Algorithm 4. Besides, the initialization of the initial

positions of porcellio scaber is modified as follows:

x0
i,1 = 0.0625 + f loor((99 − 1) × rand) × 0.0625,

x0
i,2 = 0.0625 + f loor((99 − 1) × rand) × 0.0625,

x0
i,3 = 10 + f loor(200 − 10) × rand,

x0
i,4 = 10 + f loor(200 − 10) × rand,

where x0
i, j

denotes the jth variable of the position vector

of the ith porcellio scaber; f loor(y) = argminx∈{0,1,2,··· }{x+

1 > y}, i.e., the f loor function obtains the integer part

of a real number; rand denotes a random number in the

region (0, 1). The functions f loor and rand are available

at Matlab.

The best result we obtained using the PSA in 1000

instances of executions and those by using various exist-

ing algorithms or methods for solving this problem are

listed in Table 1. Note that, in the experiments, 40 por-

cellio scaber are used, the parameter λ is set to 0.6, and

the MaxS tep is set to 100000 with τ being a zero-mean

random number with the standard deviation being 0.1. As

seen from Table 1, the best result obtained by using the

PSA is better than most of the existing results. Besides,

the difference between the best function value among all

the ones in the table and the best function value obtained

via using the PSA is quite small.

4.2 Case II: Himmelblau’s nonlinear optimization

problem

In this subsection, we consider a nonlinear optimization

problem proposed by Himmelblau [12]. This problem is

also one of the well known benchmark problems for bio-

inspired algorithms. The problem is formally described as
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Table 2. Comparisons of best results for Himmelblau’s nonlinear optimization problem

x1 x2 x3 x4 x5 g1(x) g2(x) g3(x) f (x)

[26] 78.0 33.0 27.07997 45.0 44.9692 92.0000 100.4048 20.0000 -31025.5602

[27] 78.00 33.00 29.995 45.00 36.776 90.7147 98.8405 19.9999† -30665.6088

[28] 81.4900 34.0900 31.2400 42.2000 34.3700 90.5225 99.3188 20.0604 -30183.576

[12] 78.6200 33.4400 31.0700 44.1800 35.2200 90.5208 98.8929 20.1316 -30373.949

[29] 78.00 33.00 29.995256 45.00 36.775813 92 98.8405 20 -30665.54

PSA 79.9377 33.8881 28.5029 41.3052 41.7704 91.6157 100.4943 20.0055 -30667.8113

† means that the corresponding constraint is violated.

follows [12]:

minimize f (x) =5.3578547x2
3 + 0.8356891x1x5

+ 37.29329x1 − 40792.141,

subject to g1(x) =85.334407+ 0.0056858x2x5

+ 0.00026x1x4 − 0.0022053x3x5,

g2(x) =80.51249+ 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x2
3,

g3(x) =9.300961+ 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4,

0 ≤ g1(x) ≤ 92,

90 ≤ g2(x) ≤ 110,

20 ≤ g3(x) ≤ 25,

78 ≤ x1 ≤ 102,

33 ≤ x2 ≤ 45,

27 ≤ x3 ≤ 45,

27 ≤ x4 ≤ 45,

27 ≤ x5 ≤ 45,

with x = [x1, x2, x3, x4, x5]T being the decision vector. In

this problem, each double-side nonlinear inequality can be

represented by two single-side nonlinear inequality con-

straints. For example, the constraint 90 ≤ g2(x) ≤ 110 can

be replaced by the following two constraints:

−g2(x) ≤ −90,

g2(x) ≤ 110.

Thus, this problem can also be solved by the PSA pro-

posed in this paper.

The best result we obtained via using the PSA in 1000

instances of executions, together with the result obtained

by other algorithms or methods, is listed in Table 2. In the

experiments, 40 porcellio scaber are used, the parameter λ

is set to 0.6, and the MaxS tep is set to 100000 with τ being

a zero-mean random number with the standard deviation

being 0.1. Evidently, the best result generated by the PSA

is ranked No. 2 among all the results in Table 2.

By the above results, we conclude that the PSA is a

relatively promising algorithm for solving constrained op-

timization problems. The quite smalle performance differ-

ence between the PSA and the best one may be the result

of the usage of the penalty method with a constant penalty

parameter.

5 Conclusions

In this paper, the bio-inspired algorithm PSA has been ex-

tended to solve nonlinear constrained optimization prob-

lems by using the penalty method. Case studies have vali-

dated the efficacy and superiority of the resultant PSA. The

results have indicated that the PSA is a promising algo-

rithm for solving constraint optimization problems. There

are several issues that requires further investigation, e.g.,

how to select a best penalty parameter that not only guar-

antees the compliance with constraints but also the opti-

mality of the obtained solution. Besides, how to enhance

the efficiency of the PSA is also worth investigating.
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