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Abstract 

Populations experiencing negligible predation pressure are expected to evolve higher behavioural activity. 

However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be 

sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface 

(high and diverse predation) populations of Asellus aquaticus, a freshwater isopod known for its independent 

colonization of several caves across Europe. We predicted (i) higher activity in cave than in surface populations, 

with (ii) the difference being more pronounced in males as they are known for active mate searching behaviour 

while females are not. Activity was assessed both in the presence and absence of light. Our results supported 

both predictions: movement activity was higher in the cave than in the surface populations, particularly in 

males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind 

increased behavioural activity, but we also showed that the extent of increase is sex-specific. 

 

Key words: adaptation, cave colonization, movement activity, predator-free environment 
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Geographic interpopulation variation in behaviour is commonplace (Foster 1999; Foster and Endler 1999; 

Herczeg and Välimäki 2011; Michelangeli et al. 2019). Predation is a key selective pressure (Lima and Dill 

1990; Endler 1991; Lima 1998), simply because avoiding or surviving predatory attempts has a direct effect on 

survival and the probability of future reproduction. Therefore, selection pressures stemming from predation 

often act against the positive selection for basic activities like foraging or mate searching. For instance, high 

movement activity, that increases foraging and mate finding success, in most cases also increases predation risk 

(Norrdahl and Orpimäki 1998; Kasumovic et al. 2007). Hence, if colonising a new habitat incorporates a 

decrease in predation pressure, the evolution of increased behavioural activity is expected (see Kortet et al. 

2010). Concordantly, covariation between predation pressure and behavioural activity across populations has 

been detected in various taxa (e.g., Brown et al. 2005; Herczeg et al. 2009; Rosén et al. 2017). Further, if the 

benefit of increasing movement activity under low or negligible predation is sex-specific, e.g., because of sex-

specific foraging or mating behaviours, the evolutionary shift should be stronger in the sex with the higher 

expected benefit. 

So far, the latter prediction received little attention and available studies were conducted mainly on fishes. 

For example, it was shown recently that in the Bahamas mosquitofish Gambusia hubbsi behavioural 

lateralization (i.e., asymmetric expression of behaviours relative to the main body axis) is significantly higher at 

sites with high predation risk, especially so in females (Hulthén et al. 2021). Also, females of this species from 

low-predation sites show higher rates of foraging and food consumption, while the opposite is true in males 

(Pärssinen et al. 2021). Further, female guppies Poecilia reticulata tend to be more risk-taking (or bolder) when 

predator-experienced than when predator-naïve, while males behave similarly, irrespective of their previous 

exposure to predators (Harris et al. 2010). All three studies explain the sex-specific response to different 

predation contexts by sex-specific trade-offs in behaviours (e.g., risk-taking, feeding, schooling, mating) or life-

histories (e.g., longevity, body size, fecundity). 

Species occupying caves and surface habitats are an ideal model system for testing inter-population 

behavioural divergence, as caves differ remarkably from surface habitats in many environmental parameters, 

e.g., they are perpetually dark, generally scarce in food, and show extremely low daily and seasonal 

environmental fluctuations (Romero 2009; Borowsky and Cohen 2013; Culver and Pipan 2019). The 

oligotrophic character of caves results in simple communities with truncated trophic structure often lacking 

large predators (Gibert and Deharveng 2002; Bradley and Eason 2018; Culver and Pipan 2019; Manenti et al. 

2020). Consequently, most cave animals do not face the trade-off between foraging and mate searching benefits 

on the one hand, and predation risk on the other (Poulson 1963; Hervant and Renault 2002; Salin et al. 2010). 

Therefore, the diminished predation in caves is expected to lead to loss of anti-predation behaviours (e.g., 

sheltering, Fišer et al. 2019; Horváth et al. 2021) and to increased movement activity (Carlson and Gross 2018). 

Increased movement activity yields more successful foraging and mate-finding, but it also leads to higher 

energy expenditure and could be selected against to save energy in food scarce caves. Thus, the evolution of 

movement activity in cave animals faces another trade-off and is not straight forward to predict. Its direction 

might rather be tied to the specific combination of predation pressure, food availability, and species trophic 

position, than to the cave environment per se. For example, in detritivores predator-free and food-rich caves 

might select for increased movement activity, while food deprived caves with predators might select for 

decreased movement activity. Contrastingly, in apex predators the degree of movement activity should be 
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constrained mainly by food availability and quality. So far, evidence for both increased and decreased 

movement activity has been demonstrated in cave animals (Hüppop 2000; Hervant et al. 2001; Salin et al. 

2010). In contrast to adaptive changes in movement activity of cave animals, sexual dimorphism in behavioural 

adaptations to cave environment was scarcely studied at best (Fišer et al. 2019; Herczeg et al. 2020, 2022). 

Nevertheless, this phenomenon is intuitively expected in species where certain behavioural activities (like mate 

searching) yield different fitness gains for the sexes. 

Here, we applied the cave – surface habitat context and tested the hypothesis about the evolution of 

increased movement activity following colonisation of a predator free cave, with food available in presumably 

high quantities. Our model species was the freshwater isopod Asellus aquaticus. This crustacean is widespread 

in various aquatic surface habitats across Europe and has repeatedly colonized subterranean habitats (Verovnik 

and Konec 2019), where its populations exhibit cave-adapted phenotypes characterized by eye-reduction and 

pigment loss (Protas and Jeffery 2012; Verovnik and Konec 2019). In A. aquaticus, males perform intensive 

mate searching, which is an important component of their mating success (see Vandel 1926; Balesdent 1964; 

Bertin et al. 2002). Our model system comprises a cave population dwelling in the hydrothermal Molnár János 

Cave, a completely predator-free environment (see Balázs, 2019) and three surface populations from the cave‟s 

vicinity with complex communities, including various predators and food sources. Molecular data shows that 

this cave-adapted A. aquaticus population is genetically isolated from its geographically closest surface 

population for at least 60,000 years (Pérez-Moreno et al. 2017). Unlike other caves relying exclusively on low 

amounts of external food sources, endogenous food (mat-forming bacteria) is available in large quantity in the 

Molnár János Cave (Borsodi et al. 2012). We hypothesised that (i) no predation selects for higher movement 

activity in general and (ii) the increase in movement activity is higher in the sex that benefits more from the 

increase (in this case due to higher mate finding success). In our present study, we tested two predictions. First, 

A. aquaticus adapted to the Molnár János Cave show higher movement activity than its surface conspecifics and 

second, the difference will be more pronounced in males. 

 

Materials and Methods 

Study system 

All tested populations of Asellus aquaticus are located in Budapest (Hungary) or its close surroundings. For a 

detailed description of the Molnár János Cave (MJC) see Herczeg et al. (2020). Briefly, MJC is a hypogene cave 

(water forming the cave does not come from the surface but from underground) filled with thermal water of 23-

24 °C (Erőss et al. 2006; Bodor et al. 2015). It is predator-free and the entire ecosystem relies on endogenous, 

chemoautotrophic mat-forming bacteria (Erőss et al. 2006; Bodor et al. 2015; Herczeg et al. 2020, 2022). The 

first surface population is from the Malom Lake (ML; 47.518277° N, 19.035999° E), a small pond at the 

entrance of MJC formed by its outflow. Thus, the water temperature in ML is identical to that of the cave and 

constant all year round. However, ML is subjected to the natural surface light regime and can be seen as a 

typical surface habitat, including the presence of fish predators, i.e., guppies Poecilia reticulata that were 

introduced here during the 20
th

 century (Berczik 1956) and occur in extremely high density as native fish are 

absent. Two other surface populations, the Dunakeszi Peat-moor (DM; 47.615613° N, 19.126392° E) and the 

Csömör Stream (CS; 47.593393° N, 19.121970° E), experience natural surface light regime and temperature 
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fluctuations of normal, non-thermal freshwaters typical to the region. These two populations have been chosen 

randomly among many locations in the area with similar ecological conditions that harbour A. aquaticus as well 

and probably function as one population (Pérez-Moreno et al. 2017). Both DM and CS surface populations 

harbour various vertebrate (unidentified fishes, amphibians, water birds, and semiaquatic mammals) and 

invertebrate (odonate and dytiscid larvae, erpobdellid leeches) predators. 

 

Collecting and housing the experimental animals 

Adult animals (N = 200; 25 males and 25 females per population; see also Figure 1) were collected between 16
th

 

and 17
th

 August 2018. During this season, similar water temperature at the surface localities to the water 

temperature of MJC occurs naturally. Upon collection, animals were transported to the aquacultural facilities of 

the Eötvös Loránd University. Animals were housed individually in 90 × 25 mm (diameter × height) plastic 

Petri dishes with bottoms coarsened by emery paper to enable animals‟ normal locomotion (Fišer et al. 2019). 

Clean water collected at the source habitats was used to fill the Petri dishes to the half of their height and was 

regularly refilled when the water level dropped due to evaporation. Petri dishes were kept in light-controlled 

„recording chambers‟ (see below) during the whole experiment. The temperature in the laboratory was 23–24 

°C. Gravid females of A. aquaticus form a brood pouch to carry offspring (see Lafuente et al., 2021) and likely 

display different movement activity. To avoid any bias in this respect, we only used non-gravid females. Surface 

populations were acclimated in a daily light cycle natural to the time of collection (16 h light: 8 h dark), while 

cave animals were acclimated in complete darkness (in a separate recording chamber). Both surface and cave 

animals were left without any disturbance and food for two days. Acclimation ensured that animals got familiar 

with their new artificial environment and would not show stressed behaviours later in test observations. All 

manipulations of cave animals were done under red light. As some mortality occurred during the first few days 

in the laboratory, we eventually tested 164 individuals (MJC: 10 males (M) / 16 females (F), ML: 23 M / 23 F, 

DM: 24 M / 23 F; CS: 22 M / 23 F). 

 

Experimental setup 

Acclimation and behavioural tests took place in four similar custom-made recording chambers (100 × 55 × 105 

cm, length × width × height, respectively, see Figure S1). The chambers were equipped with two light sources: 

LEDs imitating daylight (colour temperature = 4500 K, colour rendering index > 90) at the top and infrared (IR) 

LEDs (920 nm) at the bottom. Opaque plexiglass was placed over the IR LEDs to diffuse the emitted light 

evenly and at the same time to serve as a surface on which Petri dishes with animals were put. IR light was 

switched on during all recordings. Neither light source heat up the water during the experiment. Each chamber 

could house a maximum of 50 Petri dishes. The chambers were closed from sides with black plastic boards, so 

that light did not scatter outside of the chamber. Inside each chamber, we mounted a webcam (Logitech C920 

FullHD) that was technically modified to improve the quality of videos recorded in IR. OBS Studio software 
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(OBS Studio Contributors) was used to capture videos at 5 frames per second at HD resolution (1280 × 720 

pixels). 

 

Experimental protocol 

We made two rounds of observations on 20
th

 and 21
st
 of August 2018. Each population was randomly divided 

into two groups, with sexes represented equally. Half of the animals from all populations was observed under 

daylight on the first day and in darkness on the second day, whereas the other half was tested in the reverse 

order of light conditions. Individuals from cave and surface populations were randomly positioned within the 

same recording chamber for the same light treatment. Recordings started at ca. 11 am and lasted 60 min. 

Animals were given 15 min prior recordings to get used to the change from acclimation to experimental light 

regimes. After recording, we restored the acclimation light regime for all animals. 

We expected individuals to show increased movement activity in the presence of light, irrespective of 

habitat of origin. Note that the presence of light is unnatural for the cave population and can be only used to test 

for light avoidance (based on genetic-studies, cave-dwelling A. aquaticus from MJC probably retained the 

ability to detect light (Pérez-Moreno et al. 2018). Similarly, dark treatment may be intuitively seen as irrelevant 

for the presumably diurnal surface populations. Nevertheless, results from our recent experiment (Horváth et al. 

unpublished) and a previous field study (Andrikovics, 1981) both indicate that A. aquaticus are active in diverse 

light conditions, with their nocturnal movement activity exceeding their diurnal movement activity. As the 

influence of light or its absence on these isopods‟ activity and behaviour in general is not fully understood, we 

applied a full factorial design to control for its effects. 

 

Video analysis 

We analysed 15 minutes of each video, comprised of three 5 min intervals, distributed equally along the 1 h 

footage: at the start (0-5 min), middle (27.5 – 32.5 min), and end (55-60 min). Animal movement (see Video S1) 

was tracked using the digitizing tool DLTdv (Hedrick 2008). Raw tracking data was transformed to behavioural 

variables using a custom written Macro in Excel. Behavioural data for each interval were first calculated 

separately and then averaged. For the analyses, we extracted the following five variables: total distance moved 

(in mm), total time moving, number of movement bouts, as well as the mean and standard deviation of the 

distance moved per bout (in mm) (Table S1). 

 

Statistical analyses 

Spearman rank correlations indicated strong correlations between the variables (Table S2). Therefore, we ran a 

Principal Component Analysis (PCA) in IBM SPSS Statistics 25.0 (SPSS Inc., Chicago, IL, USA) to calculate 

independent principal components (PC) that explain most of the observed variation. Result of the diagnostic 

Bartlett test was significant, indicating that the correlation matrices were significantly different from the identity 

matrices. Based on Kaiser–Guttmann criterion (Kaiser 1991), only PCs with an eigenvalue greater than 1 were 
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retained (Tabachnick and Fidell 2014). Our PCA resulted in a single PC that explained 64.8% of the total 

variation (for further details see Table S3). From here on, we refer to this PC as „movement activity‟. High 

values correspond to individuals that show high movement activity coupled with high variability (SD) in 

expression of individual activity, while low values correspond to less active individuals coupled with low 

variability (SD) in expression of individual activity. 

To analyse effects of population, sex, and light regime on movement activity, we built a linear mixed model 

(LMM) using the package lme4 (Bates et al. 2015) in R 4.1.2. (R Developmental Core Team 2021). In this 

model „movement activity‟ was the dependent variable, while „population‟ (one cave and three surface 

populations), „sex‟, „light regime‟ (light, dark), all two- and three-way interactions were added as fixed factors. 

To control for habituation, we added the order of trials as a fixed effect excluded from all interactions. 

Individual identity was fitted as random intercepts. The model's estimated marginal means were extracted using 

the emmeans R package (Lenth 2019). To test the significance of between-group differences, we performed 

post-hoc tests and adjusted p-values via the false discovery rate (FDR) method of Benjamini and Hochberg 

(1995). 

 

Results 

We found significant population and population × sex × light regime interaction effects (Table 1). Post-hoc 

comparisons revealed that the cave population showed higher movement activity than the surface populations, 

the latter being similar (Figure 1, Table S4). Further, the cave population showed male-biased sexual 

dimorphism in movement activity in darkness, with males being more active (see Figure 1, Table S4). We also 

found a significant habituation effect: irrespective of source population, individuals were less active in the 

second round of observations (data not shown graphically). Finally, the significant random effect showed the 

existence of between-individual differences in movement activity (Table 1). However, note that the latter result 

should not be viewed as indicative of „true‟ animal personality as our repeated measures were performed in a 

short time interval, but more importantly, because daylight is mostly unnatural for the cave isopods and was 

applied to them only to ensure a full-factorial experimental design.  

 

Discussion 

The negative covariation between predation risk and behavioural activity across populations is well documented 

(e.g., Lima and Dill 1990; Lima 1998; Van Buskirk and Arioli 2002; Hettyey et al. 2015). However, how sexes 

with different gains from increasing behavioural activity evolve under negligible predation was rarely studied 

(but see Norrdahl and Orpimäki 1998; Harris et al. 2011; Hulthén et al. 2021; Pärssinen et al. 2021). Further, the 

above questions were even more rarely addressed within the cave vs. surface population comparison context, 

contrasting caves with negligible predation to surface habitats with high and diverse predation (Romero 1985; 

Uiblein and Juberthie 2000; Bradley and Eason 2018). In the present study, we compared the movement activity 

of male and female cave-adapted A. aquaticus to their surface-adapted conspecifics. Our most salient findings 

support our predictions and are straightforward: (i) increased movement activity in the cave population of A. 

aquaticus compared to its three similarly active surface populations and (ii) the increase in movement activity 

was higher in males than in females when tested in natural settings (i.e., in darkness). At first, these findings 
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might seem in stark contrast to the results of another study of ours (Horváth et al. unpublished) which indicated 

a decrease of movement activity in the MJC population compared to its close by surface populations. However, 

we note that in that study both experimental setup (test arenas were maze-like tracks) and design (tests were 

done in conditions unfamiliar to the animals) were markedly different from the present study. Thus, in each 

study a different aspect of movement activity was measured deliberately. Here we targeted general movement 

activity in familiar environment, while in the other study we focused on exploratory movement activity in novel 

environment. 

In support to our first prediction, movement activity of cave A. aquaticus was substantially higher than that 

of the surface populations, including ML that is hydrologically connected to the cave. Predation is a major 

selective force for various phenotypic characteristics (Lima and Dill 1990) and is considered as a particularly 

important factor in the evolution of behavioural traits, such as activity, exploration, and boldness (see Kortet et 

al. 2010). Generally, the theory predicts a negative association between activity and predation risk (Lima 1998), 

which is well supported by empirical observations showing population patterns of increased behavioural activity 

under negligible predatory risk (e.g. Magurran and Seghers 1991; De Meester 1993; Bell 2005; Brydges et al. 

2008; Herczeg et al. 2009; but see Brown et al. 2005, 2007). Old cave species or populations that display a high 

degree of cave-related adaptations are also expected to show a reduction of anti-predator responses (Tobler 

2009). In line with this notion, Manenti et al. (2020) found that the response to predators is maintained in a 

recent cave colonist, i.e., the cave-dwelling populations of the Pyrenean newt Calotriton asper, while such 

behaviour is absent in a phylogenetically old species, the olm Proteus anguinus. As predators are missing from 

the herein studied MJC, it is highly plausible that increased movement activity in the cave population is the 

result of the lack of predation selecting against any unnecessary activity. Somewhat similarly to the results 

presented here, a recent study by Horváth et al. (2021) found that cave individuals from MJC shelter less (i.e., 

are more risk-taking) than their surface conspecifics, suggesting another behavioural adaptation to the lack of 

predation. A reduction of shelter-seeking has also been demonstrated for another, independently evolved cave 

population from Slovenia (Fišer et al. 2019). Regarding surface populations, it was suggested previously that in 

habitats where fast-moving and actively searching fish predators are the main threat to A. aquaticus, lower 

overall behavioural activity and slower speed might provide a selective advantage (Eroukhmanoff and Svensson 

2009; Eroukhmanoff et al. 2009). Despite known differences in predator fauna between ML (high density of 

allochthonous guppies) and DM and CS (various vertebrate and invertebrate predators) surface populations, 

their movement activity was rather similar. 

Alternatively, the significant increase in movement activity observed in the MJC cave population can be 

seen as a possible mechanism to cope with food scarcity, i.e., high movement activity increases foraging success 

in cave-adapted A. aquaticus. For example, Hervant et al. (1997) found that surface-dwelling A. aquaticus show 

increased movement activity (i.e., active food searching behaviour) during short term fasting. If food 

deprivation lasted longer, movement activity eventually decreased, however, refeeding triggered increased 

activity again. At first sight this alternative explanation seems unlikely for the MJC system as it is abundant 

with chemoautotrophic bacterial mats on which cave isopods feed. It was also reported that surface A. aquaticus 

feed on microbial communities growing on decaying plant material rather than plant tissue itself (Graça et al. 

1993a, b, 1994a, b), and that such food sources even have a more optimal stoichiometric composition of 

essential chemical elements (Lürig and Matthews 2021). However, a few other studies with surface A. aquaticus 
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showed that it grows substantially slower on various microbiota than on fresh or decaying plant tissues (Marcus 

et al. 1978; Willoughby and Marcus 1979). Furthermore, our recent findings indicate that cave-adapted A. 

aquaticus in the MJC not just maintained the ability to feed on decaying leaf-litter, but actually this food is 

preferred over bacterial mats despite the latter are the sole available source of food in the cave (Herczeg et al. 

2020, 2022). Although we possess no exact information regarding the nutritional content of MJC bacterial mats, 

it seems that they are accumulating potentially toxic chemical elements (Dobosy et al. 2016; Enyedi et al. 2019). 

This might present poor quality diet and, along with our previous behavioural observations, indirectly indicates 

that bacterial mats in this cave are rather an obstacle (surface populations unconnected to the cave avoided 

bacteria almost entirely), and that the MJC cave population might be somewhat food deprived after all. Thus, we 

cannot determine whether movement activity increased solely due to relaxed predation, or whether it was 

positively selected for also by the scarcity of high quality food. Nevertheless, and based on the results in hand, 

the lack of predation in the cave seems to be the main selective factor behind the detected pattern. 

In support to our second prediction, the cave-surface divergence in movement activity was more pronounced 

in male than female A. aquaticus: while we found no behavioural sexual dimorphism in surface populations, 

including ML that is hydrologically connected to the cave, in cave animals tested under natural conditions 

(darkness), males were more active than females. Males and females often evolve differences in traits related to 

their sex-specific ecological niche, such as body size and shape (Kaliontzopoulou et al. 2015; Oke et al. 2019; 

Balázs et al. 2021) as well as resource (Gherardi 2004; Gomes-Ferreira et al. 2005) and habitat use (Morris 

1984; Lindeman 2003). Despite this, the study of local adaptations mostly ignores sexual dimorphism, and at the 

same time, relatively few studies focussing on sex differences (or sexual selection in general) consider that 

environments show spatial variation (Connallon et al. 2018). However, recent empirical data shows that 

accounting for variability in patterns of divergence between sexes highly improves our understanding of the 

processes underlying adaptive divergence (e.g. Hendry et al. 2006; Riesch et al. 2013; Oke et al. 2019; Balázs et 

al. 2021). In the present study, we observed a marked male-biased sexual dimorphism in movement activity in 

the MJC cave population, i.e., cave males were considerably more active than cave females. This pattern was 

present when isopods were observed in darkness, but not in light. It is important to note that cave-adapted A. 

aquaticus from MJC preserved the ability to detect light (Pérez-Moreno et al. 2018) and they are known to avoid 

light (personal observation). Most likely, their photophobic behaviour masked the sexual dimorphism in activity 

in the presence of light. Male-biased movement activity is expected for A. aquaticus considering what we know 

of the reproductive biology of surface populations, which is largely retained in cave populations. Males compete 

for high quality females and guard them for several days before mating (Thompson and Manning 1981). 

Additionally, males were shown to actively search for mates, while females do not (Bertin and Cézilly 2003). 

Thus, the sexual dimorphism in movement activity observed for cave individuals can be (again) explained by 

the lack of predation. If the costs of high movement activity of males in the cave population are negligible, its 

mating benefits will „freely‟ select for maximum activity. 

However, there might be another reason behind the observed male-biased dimorphism in the cave habitat. 

Cave populations typically have lower densities than surface populations (Mammola et al. 2021), and spatial and 

temporal distribution of individuals can substantially influence individual‟s success of finding appropriate mates 

(Beauché and Richard 2013). Thus, if population density in the cave is lower than at the surface, males must be 

more active to find receptive females. This finds support in a study that Harris et al. (2011) conducted on surface 
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A. aquaticus, showing increased activity in males compared to females, but only in populations with low 

density. The same study might also provide an explanation for the surprising sexual monomorphism of 

movement activity in the herein examined surface populations, both in darkness and light. If surface populations 

exposed to intense predation have high densities, higher activity adds little to mate finding success and much to 

the risk of being predated, so males are better off similarly active as females. Again, specific combination of 

predation and population density seems a more likely determinant of sexual dimorphism in movement activity 

than the surface or cave environments per se. 

Taken together, general movement activity was higher in the cave than in surface populations, while male-

biased sexual dimorphism in movement activity was present only in the cave population. The most obvious 

selective factor behind this pattern seems to be the lack of predation in the cave habitat, but other factors, such 

as food availability and population density, likely contribute to it too. Since we studied wild-caught individuals, 

we cannot entirely exclude the possibility that the observed divergence is caused by phenotypic plasticity (a 

genotype‟s ability to develop or express alternative phenotypes in different environments, West-Eberhard, 

2005). However, this explanation seems highly unlikely as the MJC population is genetically isolated from the 

adjacent surface populations, including the closest one in Malom Lake, for at least 60,000 years (Pérez-Moreno 

et al. 2017), and shows several morphological adaptations related to cave-life (Balázs et al. 2021). Finally, we 

note that our results originate from an exceptionally unique cave system (predator-free and most likely food-

rich) and cannot be generalized across all cave populations of A. aquaticus. Most of these are subjected to 

different predation regimes (e.g. considerable predation pressure by the olm, Proteus anguinus) as well as 

quantity and type of food resources (e.g. temporal and spatial fluctuations of allochthonous nutrient-poor food in 

sinking rivers), besides they might also differ in population densities. So, it is reasonable to expect that different 

selection regimes in other cave systems might cause movement activity to evolve in different directions. 

Alternatively, we cannot exclude the possibility of stochastic events in trait evolution via strong founder effects 

and genetic drift during expansions of the surface populations‟ ranges into the subterranean environment, i.e., 

cave colonisation (Wessel et al. 2013; Miller et al. 2020). Further studies are needed to discover if evolution of 

movement activity in caves follows a common trajectory or is it diverse and rather tied to specific combinations 

of biotic and abiotic environmental factors, or even carries the signature of stochastic evolutionary events. 
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Figure 1. A typical cave A) and surface B) type Asellus aquaticus from this model system in their natural 

habitat (adapted from Balázs et al. 2021). 
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Figure 2. Movement activity of male and female Asellus aquaticus in A) light and B) darkness. Movement 

activity is the first principal component of a PCA on five behavioural variables measured from videos (see 

Methods); higher values on the y-axis denote higher activity. Estimated marginal means ± standard errors are 

shown. Statistically significant (P < 0.05) between-group differences revealed by post-hoc comparisons are 

letter-coded (grouping factors were sex, populations, and treatments). Note that treatments marked with the 

same letter are not significantly different even between panels A and B (for further details see Table S4). 
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Table 1. The ANOVA table of the linear mixed model on movement activity of Asellus aquaticus. Statistically 

significant effects (P < 0.05) are bolded. 

Model term   

Fixed effects F (df1, df2) P-value 

Population 46.43 (3; 164) < 0.001 

Sex 3.88 (1; 164) 0.05 

Light regime 1.97 (1; 164) 0.16 

Population × Sex 0.42 (3; 164) 0.74 

Population × Light regime 0.4 (3; 164) 0.75 

Sex × Light regime 3.44 (1; 164) 0.07 

Population × Sex × Light regime 3.03 (3; 164) 0.03 

Habituation 8.49 (1; 164) 0.004 

Random effect χ
2
 (df) P-value 

Individual 17.37 (1) < 0.001 
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