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Abstract

As a result of great diversity in life histories and a large number of described species, tax-

onomic and phylogenetic uncertainty permeates the entire crustacean order of Isopoda.

Large molecular datasets capable of providing sufficiently high phylogenetic resolution,

such as mitochondrial genomes (mitogenomes), are needed to infer their evolutionary

history with confidence, but isopod mitogenomes remain remarkably poorly represented

in public databases. We sequenced the complete mitogenome of Cymothoa indica, a spe-

cies belonging to a family from which no mitochondrial genome was sequenced yet, Cym-

othoidae. The mitogenome (circular, 14484 bp, A+T = 63.8%) is highly compact, appears

to be missing two tRNA genes (trnI and trnE), and exhibits a unique gene order with a

large number of rearrangements. High compactness and the existence of palindromes

indicate that the mechanism behind these rearrangements might be associated with line-

arization events in its evolutionary history, similar to those proposed for isopods from the

Armadillidium genus (Oniscidea). Isopods might present an important model system to

study the proposed discontinuity in the dynamics of mitochondrial genomic architecture

evolution. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood) con-

ducted using nucleotide sequences of all mitochondrial genes resolved Oniscidea and

Cymothoida suborders as paraphyletic. Cymothoa indica was resolved as a sister group

(basal) to all remaining isopods, which challenges the accepted isopod phylogeny, where

Cymothoida are the most derived, and Phreatoicidea the most basal isopod group. There

is growing evidence that Cymothoida suborder might be split into two evolutionary distant

clades, with parasitic species being the most basal split in the Isopoda clade, but a much

larger amount of molecular resources carrying a high phylogenetic resolution will be

needed to infer the remarkably complex evolutionary history of this group of animals with

confidence.
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Introduction

Isopoda is an exceptionally speciose (>10,000) order of crustaceans that mostly but not exclu-

sively inhabit aquatic habitats [1,2]. As a result of great diversity in life histories and a large

number of described species, taxonomic and phylogenetic uncertainty permeate the entire

order [1,3–7]. As studies relying on morphology and small molecular datasets (such as single

gene datasets) did not manage to resolve their phylogeny, this is an indication that phyloge-

netic resolution provided by the commonly used markers (such as cox1 or 18S) is too low to

unequivocally resolve the evolutionary history of Isopoda. Therefore, availability of molecular

resources carrying a high phylogenetic resolution is indispensable for identification and evolu-

tionary history studies of Isopoda.

Mitochondrial genomes (mitogenomes) carry a large amount of data, which makes them

capable of providing much higher resolution than traditionally used morphological and (sin-

gle-gene) molecular markers, so mitochondrial phylogenomics is increasingly used to address

phylogenetic and taxonomic controversies [8–10]. Furthermore, isopod mitogenomes gener-

ally exhibit a large number of gene order rearrangements [4,11], and some groups of isopods

even possess a non-standard, linearised, mitogenome organisation and unique tRNA-encod-

ing mechanisms [12–16]. As the evolution of mitogenomic architecture appears to be highly

discontinuous [17,18], with some major animal taxa exhibiting a highly conserved mitochon-

drial architecture (most vertebrates being a good example), and other taxa exhibiting a rap-

idly-evolving architecture [17–21], we hypothesise that isopods might present an important

model system to study the complex dynamics of the evolution of mitochondrial genomic

architecture. However, isopod mitogenomes remain remarkably poorly represented in the

GenBank, with only five complete and 19 partial mitogenomes currently (Apr, 2018) available

for the entire order (20 species in total), which presents a major obstacle to their application.

Among the non-represented taxa (taxa from which no mitochondrial genome was

sequenced yet) is the entire large (�366 species and�42 genera [22]) family Cymothoidae

Leach 1818 (suborder Cymothoida, superfamily Cymothooidea). Species belonging to this

family are largely obligate parasites of fishes that feed on host tissues and fluids at least at some

stage of their life [1,22,23]. Cymothoid isopods are mostly protandrous hermaphrodites that

have a biphasic life cycle: after the free-swimming micropredatory stage, they attach perma-

nently to fishes (or other crustaceans), upon which they change sex and morphology [24].

They exhibit a range of parasitic feeding strategies: on the external body surfaces, in the buccal

and opercular cavities, or burrowing into the muscle of their fish hosts [1,22]. The buccal

mode sometimes results in the intriguing phenomenon of parasitic castration [25].

Identification and taxonomy of cymothoid isopods are complicated by a number of factors,

including morphological similarity, sequential hermaphroditism, sexual dimorphism (females

up to three times larger than males), flexible host preference almost completely unrelated to

phylogeny, habitat flexibility (sea, brackish and fresh water), global distribution of many spe-

cies, etc. Along with limited molecular resources currently available, this causes frequent

incorrect identifications and misuse of species names, so synonymies and paraphyly are wide-

spread, which is reflected in widely varying estimates of the number of valid species and genera

within the family Cymothoidae [1,3,22–24,26–28]. Additionally, although the monophyly of

Cymothoida is believed to be supported by morphological data and rejected by molecular data

[7], a relatively recent morphological study also failed to find evidence for the monophyly of

Cymothoida [29], so it is increasingly likely that the suborder is indeed paraphyletic [5,11,29].

This phylogenetic and taxonomic uncertainty permeates the deep-level phylogeny of Isopoda

as well: there are some indications that the position of Cymothoida, which was traditionally

regarded as the most derived isopod taxon [4,7,26,30], may be relatively basal within the
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Isopoda [6,7,27] (throughout the manuscript we use these two terms, basal and derived, to

refer to common ancestors, not extant species). The few attempts to apply mitochondrial phy-

logenomics to study the evolutionary history of Isopoda resolved this suborder relatively ‘cen-

trally’ within the Isopod clade, clustering with Sphaeromatidea and Valvifera [4–6,11]. As only

two cymothoid mitogenomes are currently available, both belonging to free-living Cirolanidae

species, interpretation and reliability of these findings are severely hampered by the low num-

ber of mitogenomes available.

To address this problem, we sequenced and characterised the first complete mitochondrial

genome of a parasitic cymothoid isopod, Cymothoa indica Schiödte & Meinert 1884 (Cym-

othoidae), and conducted comparative mitogenomic and phylogenomic analyses. Our results

indicate that the availability of this mitogenomic sequence has the potential to advance our

understanding of the evolution of mitogenomic architecture and phylogeny of Isopoda, but

the amount of available data remains too limited to draw conclusions with confidence.

Results and discussion

Genome architecture and characteristics

The complete mitochondrial genome of C. indica is a circular, 14,484 bp-long molecule, some-

what smaller than most of the remaining complete isopod mitogenomes (Worksheet A in S1

File). Although there is evidence for a linear mitogenomic organisation in Armadillidium vul-
gare [12], an isopod species belonging to a different suborder (Oniscidea), we did not find any

indications of such organisation in C. indica (i.e., all fragments overlapped during the assem-

bly). The mitogenome possesses the standard 13 protein-coding genes and two rRNA genes

(12S and 16S), but only 20 tRNA genes, as trnI and trnE could not be detected (Table 1). A 390

bp-long putative control region (CR) was found between trnS and nad1 genes. The A+T con-

tent of the complete mitogenome (63.8%) is average for isopods (54 to 72%; Worksheet A in

S1 File). It should be emphasised here again that only five complete mitogenomes were avail-

able for the entire order Isopoda when we conducted these analyses, so all comparative analy-

ses in this study were hampered by the fact that the remaining 18 mitogenomes were partial,

and should be interpreted with that limitation in mind.

Gene order

The ancestral arthropod architecture, almost identical to the one exhibited by Limulus polyphe-
mus (Fig 1), has remained almost unchanged for over 400 million years in many crustacean

lineages [31], but not among the isopods [32,33]. Gene order rearrangements in this group of

animals were discussed in detail in previous studies [4,11,32], so here we only briefly discuss

the idiosyncrasies of the new mitogenome. Cymothoa indica also exhibits a completely unique

order with a large number of rearrangements (Fig 1). The only available isopod mitogenome

exhibiting somewhat similar architecture is that of the only other available Cymothoida (family

Cirolanidae) species, Bathynomus sp. [11]. In terms of PCG and rRNA arrangement, the two

mitogenomes are almost identical, with the exception of the position of nad1: in C. indica it is

on the minus strand, which corresponds to the putative pancrustacean ground pattern [4,34],

but in Bathynomus sp. it is on the plus strand (Worksheet B in S1 File). However, the two mito-

genomes also differ in the arrangement of a number of tRNAs (L2, A, V, E, W, H, L1, S1), and

the location of the putative control region (CR). In terms of uniquely derived gene positions of

single species in relation to the putative pancrustacean ancestral gene order discussed by Shen

et al. [11], C. indica shares the unique position of trnS-nad1 with Bathynomus sp. In compari-

son to the putative ancestral isopod architecture [4], C. indica differs in the arrangement of

nad1 and 12S rRNA genes, which appear to have switched places, and a number of tRNAs: L2,
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R, V, S1, W, E and I (the last two are missing). Intriguingly, it shares large, completely con-

served (in terms of gene order) segments of the mitogenome of 16/11 genes (cytb through

trnY/rrnL) with Asellus aquaticus/Eophreatoicus sp. respectively, which may bear relevance for

resolving the conflicting topologies produced by different datasets for Isopoda (see discussion

in the ‘Phylogeny’ section for further details).

Mitogenomic gene order rearrangements are usually attributed to the TDRL (tandem

duplication and subsequent evolutionary loss of duplicated genes) mechanism [19,35], but

high compactness of isopod mitogenomes indicates that this is not the most parsimonious

Table 1. Organisation of the mitochondrial genome of Cymothoa indica.

Gene From To Length IGR Start Stop Anticodon Strand

trnQ 1 62 62 TTG -

trnM 67 129 63 4 CAT +

nad2 130 1131 1002 ATT TAG +

trnC 1129 1182 54 -3 GCA -

trnY 1186 1246 61 3 GTA -

cox1 1245 2786 1542 -2 ATG TAA +

cox2 2830 3508 679 43 ATA T +

trnK 3509 3569 61 TTT +

trnD 3567 3619 53 -3 GTC +

atp8 3626 3781 156 6 ATA TAA +

atp6 3775 4450 676 -7 ATG T-- +

cox3 4451 5236 786 ATG TAA +

trnR 5243 5295 53 6 TCG +

trnG 5296 5353 58 TCC +

nad3 5351 5701 351 -3 ATC TAA +

trnA 5702 5756 55 TGC +

trnV 5758 5819 62 1 TAC +

trnN 5816 5879 64 -4 GTT +

rrnS 5880 6604 725 +

CR 6605 6994 390

nad1 6995 7927 933 ATT TAA -

trnL1 7937 7996 60 9 TAG -

trnL2 8043 8102 60 46 TAA -

trnS 8100 8158 59 -3 TCT -

trnW 8155 8215 61 -4 TCA -

cytb 8220 9344 1125 4 TTG TAG -

trnT 9345 9398 54 TGT -

nad5 9398 11095 1698 -1 ATA TAA +

trnF 11097 11154 58 1 GAA +

trnH 11147 11206 60 -8 GTG -

nad4 11181 12515 1335 -26 ATG TAA -

nad4L 12514 12781 268 -2 TGG T -

trnP 12797 12860 64 15 TGG -

nad6 12863 13342 480 2 ATA TAA +

trnS 13342 13401 60 -1 TGA +

rrnL 13402 14475 1074 -

CR is control region. IGR is intergenic region, where a negative value indicates an overlap.

https://doi.org/10.1371/journal.pone.0203089.t001
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explanation in this group of animals, as TDRL events result in pseudogenes which are then

usually [17,36] ‘erased’ from the mitogenome in the course of evolution [37]. In terrestrial iso-

pods (Oniscidea: Armadillidium), a different mechanism was proposed: the atypical organisa-

tion of their mitogenomes, which are composed of linear monomers and circular dimers,

might facilitate architecture conversions via creation of telomeric hairpins [14,15]. Doublet

et al. [14] have characterised the (highly conserved) CR structure in isopod species that

undergo (occasional) mitogenome linearization, but the putative CR of C. indica does not

appear to possess any of those features. However, regardless of the different organisation, its

CR sequence does contain a large number of palindromes (24� 6bp), which are required for

the formation of hairpins. Therefore, we hypothesise that occasional linearization events in

their evolutionary history might be the most parsimonious explanation for the large number

of gene rearrangements observed in this species and Isopoda in general.

tRNAs

Whereas the majority of sequenced metazoan mitogenomes contain the full set of 22 tRNAs,

the number of identified tRNA genes often varies in arthropod mitogenomes [16]. Most

sequenced isopod mitogenomes appear to possess an incomplete set of tRNA genes [5,32]. As

trnI and trnE appear to be missing from nine and 16 (respectively) of the available mitogen-

omes, C. indica is not an outlier in this aspect. Another tRNA gene commonly missing from

isopod mitogenomes is trnW (13 species), but we annotated this gene upstream of cytb, as

observed in some other isopods (Fig 1), and successfully folded it into a relatively standard clo-

verleaf structure. The loss of mitochondrial tRNA genes is usually compensated by the import

of nuclear tRNAs [16,38], but some unique features described in oniscidean isopod mitogen-

omes raise suspicion that these missing tRNAs might be actually encoded in their mitogen-

omes: heteroplasmic mitochondrial DNA, which may allow for the presence of two tRNA

genes with different anticodons at the same locus [15,39,40], and tRNA genes partially or fully

overlapping with protein coding genes, that have been reported in the oniscidean Armadilli-
dium genus [16]. Although we did find an unusually large overlap (26 bp between nad4 and

Fig 1. Gene order in isopod mitogenomes. The newly sequenced species, Cymothoa indica, is bolded and marked with a black dot. GenBank accession numbers are

shown next to the species names, and gene legend is incorporated in the figure. Two outgroups, Limulus polyphemus and Euphausia pacifica, are also shown.

https://doi.org/10.1371/journal.pone.0203089.g001
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trnH), we did not find any evidence for the existence of fully overlapping genes, nor for hetero-

plasmy (by examining electropherograms), so these features appear to remain limited to onis-

cidean isopods. A 46 bp-long non-coding fragment between trnL1 and L2 genes bears high

similarity to trnE orthologues in other isopods (including the conserved anticodon), but it is

missing the 3’ end. We attempted to create a 19-bp overlap with the downstream trnL2 gene,

but the ARWEN tool [41] still did not manage to fold the gene into a cloverleaf structure.

Therefore, although the conserved 5’ end and anticodon make us suspect that this tRNA gene

might be functional after undergoing post-translational editing [42], as we have no evidence

for this, it remains merely a speculation.

NCRs and overlaps

Mitogenomes of isopods are believed to be very compact, with many overlaps between

genes and short non-coding sequences [32]. In agreement with this, we found 12 intergenic

regions ranging from 1 to 46 bp in size (excluding the putative control region). The largest

was located between cox1 and cox2 genes, followed by 15 bp between nad4L and trnP genes,

whereas the remaining nine were smaller than 10 bp (Table 1). Further evidence for this

high compactness is a relatively large number (13) of gene overlaps observed, ranging from

1 bp to 26 bp. Eleven of these overlaps, including the largest, between nad4 and trnH,

involved at least one tRNA gene. This is expected and believed to be a consequence of lesser

evolutionary constraints on tRNA genes [16]. The only overlaps involving two PCGs were

those between atp8/atp6 (7 bp) and nad4/nad4L (2 bp). However, there are several indica-

tions that atp8 and nad4L are generally under relaxed evolutionary constraints: both are

exceptionally small (in C. indica: atp8 = 156bp, and nad4l = 268bp); nad4 and nad4L often

overlap in mitogenomes of many different groups of animals including isopods [32]; atp8 is

often even completely absent from mitogenomes [19]; and atp6/atp8 overlaps of 4–12 bp

were also reported in other isopods [5,11,32]. Therefore, we do not suspect an annotation

artefact in either of the two overlaps. In conclusion, this mitogenome can also be character-

ised as highly compact, which bears relevance for inferring the evolutionary history of its

architectural rearrangements.

Gene features

Most PCGs of C. indica exhibit sizes and start/stop codons standard for isopods (Worksheet C

in S1 File). An exception is cytb, which (putatively) uses a non-standard TTG start codon.

Alternatively, it might use a standard ATT start codon, but that would create a 12-bp overlap

with the neighbouring trnT gene. The atp6 gene exhibited a unique 6 bp-long insertion from

positions 56 to 61, but this fragment of the sequence is generally poorly conserved so we don’t

deem this as suspicious. Whereas other isopod atp6 genes end with a TAA stop codon, in the

studied mitogenome this codon appears to have mutated into TAT (presuming this is not a

sequencing artefact). This is not likely to affect its transcription, as it can still use T—as the

stop codon [43]. In cox1, a frameshift mutation (or insertion) near the end of the gene appears

to have caused a minor extension of the gene: 1542 bp. vs. 1531–1539 bp. in orthologs (Lim-
noria quadripunctata is an outlier with 1596 bp, but as all other genes are highly conserved in

size, we suspect an annotation artefact here; Worksheet C in S1 File). Alternatively, it might

use a non-standard stop codon, or span only 1524 bp. The 5’ end of nad5 gene is very diver-

gent, so the start codon is questionable: we selected the standard ATA, creating a 1 bp overlap

with the neighbouring tRNA, but if it uses one of alternative start codons, it might start 9, 15,

21, or 24 bp downstream with an ATC.
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Several genes exhibit unusually broad size variability in isopods (Worksheet C in S1 File),

but in most cases we suspect annotation artefacts, especially as most mitogenomes are incom-

plete. For example, cytb gene exhibits a huge variation in size in the available isopods, from

303 to 1206 bp, but outliers are mostly incomplete, unpublished or unverified mitogenomes,

or from a study wherein a large number of mitogenomes were sequenced with the aim to focus

on gene rearrangements [4]. An intriguing outlier is Bathynomus sp. [11], which exhibited a

very divergent 3’ end of the sequence, much longer that the rest of the orthologs. As the

authors did not discuss this issue, we also suspect an annotation or a sequencing artefact here.

Finally, nad1 gene also exhibits a suspiciously wide size range (876 to 972 bp). Here again,

Bathynomus sp. is among the outliers, but in this case its large size (969 bp) is very likely to be

an artefact, as it can easily be shortened by 15 bp (to 954 bp) to use the same start codon as

most other orthologs, ATA (S2 File). Other three outliers, Oniscus asellus (876 bp), Porcellio-
nides pruinosus (882 bp), and Armadillidium album (972 bp) are unverified and come from the

same unpublished study, so their unusual sizes would have to be independently confirmed.

Phylogeny

The two phylogenetic analyses, Bayesian Inference (BI) and Maximum Likelihood (ML), pro-

duced topologies (Figs 2 and 3) differing in three details: the position of Limnoria quadripunc-
tata (sister-clade to Oniscidea in ML, a relatively basal position in BI), the relationship of

Eurydice pulchra and Sphaeroma serratum (sister-clades in ML), and the length of the Janira
maculosa branch (extremely long in ML). In other aspects, the results of the two analyses were

congruent, with the BI topology exhibiting very high statistical support, and the ML topology a

mix of mostly high and several lower values. The suborder Oniscidea was resolved as

Fig 2. Mitochondrial phylogenomics of Isopoda: Bayesian inference analysis. The analysis was conducted using nucleotide sequences of all genes. Limulus polyphemus
(branch cropped) and Euphausia pacifica are outgroups. Scale bar corresponds to the estimated number of substitutions per site. Bayesian posterior probability values

(lower than 1.0) are shown next to corresponding nodes. GenBank accession numbers are shown next to species names. Taxonomic rank (suborder/superfamily) is shown

to the right. Coloured branches highlight paraphyly.

https://doi.org/10.1371/journal.pone.0203089.g002
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paraphyletic by Ligia oceanica [32] exhibiting a sister-clade relationship with a cluster of other

taxa (Eurydice pulchra, Sphaeromatoidea, and Valvifera; see Worksheet A in S1 File for

detailed taxonomy). Paraphyly of Oniscidea caused by this genus is a relatively well-established

fact [6], and all recent mito-phylogenomic analyses resolved this species approximately in the

same position [5,6,11]. Although it is tempting to interpret this as a sign that its position is

resolved, we advise that additional mitogenomes belonging to this genus should be sequenced,

to exclude the possibility of misidentification or unusual evolutionary rates, before any taxo-

nomic changes are officially proposed. The Limnoria genus was described as ‘rogue’ a long

time ago [7], and its position also remains unresolved to this day, including by our study. In

recent mitochondrial phylogenomic studies it was mostly resolved as a sister-clade to Onisci-

dea (which corresponds to our ML topology) using different datasets (nucleotides and amino

Fig 3. Mitochondrial phylogenomics of Isopoda: Maximum likelihood analysis. The analysis was conducted using nucleotide sequences of all genes. Limulus
polyphemus and Euphausia pacifica are outgroups. Scale bar corresponds to the estimated number of substitutions per site. Bootstrap support values (lower than 100) are

shown next to corresponding nodes. GenBank accession numbers are shown next to species names. Taxonomic rank (suborder/superfamily) is shown to the right.

Coloured branches highlight paraphyly. Janira maculosa branch (dashed line) is shortened, with its original size shown below the phylogram.

https://doi.org/10.1371/journal.pone.0203089.g003
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acids) and algorithms (BI and ML) [5,11]. However, Lins et al. [6] resolved it as a sister-clade

to all other isopoda (BI, amino acid dataset), and a combined mitonuclear dataset (18S, 28S,

and cox1) in the same study resolved it as a sister-clade to a derived Asellota clade (Asellota

was paraphyletic in that analysis). Therefore, although most mitogenomic analyses resolve it as

a sister-clade to Oniscidea, extreme variations in its position indicate that the evolution of this

species is very peculiar, and that more molecular data of closely related species should be

sequenced to identify the reasons underlying this instability. As the J. maculosa mitogenome is

incomplete (<10,000 bp), we suspected that the long branch produced by the ML analysis may

have been an artefact. To test this hypothesis, we removed the four genes (atp6 and 8, nad1
and 5) missing from J. maculosa from the entire dataset and re-conducted the ML analysis.

This analysis produced a congruent topology (S1 Fig.) and resolved the issue, with the length

of the branch comparable to the one produced by the BI analysis.

Most importantly, the newly-sequenced C. indica species was resolved as a sister group

(basal) to all remaining isopods, which challenges the accepted isopod phylogeny, where

Phreatoicidea (represented by Eophreatoicus sp.) is usually regarded as the most basal split

within the Isopoda [4,7,30], and Cymothoida as the most derived group [4,7,26,30]. The

most basal position of Phreatoicidea was also challenged by the position of Asellota clade

(A. aquaticus and J. maculosa), which was derived in relation to Cymothoidae, but basal to

Phreatoicidea and all other Isopoda. This topology (Asellota basal to Phreatoicidea) was

produced by all other recent mitochondrial phylogenomic analyses as well [5,6,11] (with the

exception of an amino acid dataset in [11]). Although all of these topologies support the

close relationship of these two clades, and their relatively basal position within the Isopoda

clade, none of them show support for the proposed monophyly of a combined asellotan and

phreatoicidean clade [4,44]. The suborder Cymothoida was paraphyletic: the other cym-

othoid species included in the analysis, Eurydice pulchra (Cymothoida: Cirolanidae), clus-

tered with Sphaeromatoidea and Valvifera (low support in ML). This position of E. pulchra
is congruent with the topologies produced by most other mito-phylogenomic studies

[4–6,11]. A topology highly congruent to ours, including the deep evolutionary split

between free-living (Cymothoidae) and parasitic (Cirolanidae) cymothoid species, was pro-

duced before using a combined 18S-morphology dataset [7]. Similar topologies were also

produced by two Bayesian analyses of combined mitonuclear gene datasets [6,27], but this

was not further discussed by the authors. Intriguingly, that same mitonuclear dataset

resolved E. pulchra within the basal cymothoid clade [6]. The basal position of C. indica
within the isopod clade is further indirectly supported by the similarity in gene order with

A. aquaticus and Eophreatoicus sp. (J. maculosa is incomplete, so it is difficult to assess the

level of similarity). Therefore, although the issue cannot be declared resolved yet, it appears

that there is increasing evidence from different types of data (gene order, mitochondrial

phylogenomics, mitochondrial and nuclear single-marker, and morphological data) for

deep paraphyly of the suborder Cymothoida, and for the parasitic Cymothoidae being sister

group to all other Isopoda.

Conclusions

As the absence of a sufficient number of sequenced mitogenomes is currently the foremost lim-

iting factor to their broader application, we sequenced the first mitogenome of a species belong-

ing to the large family Cymothoidae, Cymothoa indica. The results of our phylogenetic analyses,

which resolved C. indica as the most basal split in the isopod clade, present a major challenge to

the accepted deep phylogeny of Isopoda. There is growing evidence that Cymothoida might be

split into two evolutionary distant clades, with parasitic species being the most basal split in the
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isopod clade. However, the small number of isopod mitogenomes currently available (as well as

the minor topological instability observed) prevents us from making any conclusions with con-

fidence. Therefore, a much larger amount of molecular resources carrying a high phylogenetic

resolution will be needed to infer the remarkably complex evolutionary history of this group of

animals with confidence. Aside from the importance of mitochondrial genomes for taxonomy

and phylogenetics, the highly rearranged and unique gene order found in Cymothoa indica is a

further indication that isopods might present an important model system to study the discon-

tinuous dynamics of the evolution of mitochondrial genomic architecture. Therefore, sequenc-

ing of further isopod mitogenomes is strongly urged.

Materials and methods

Samples, identification, and DNA extraction

Two adult specimens were collected on 10/07/2017 in Dayawan Town, Guangdong Province,

China (22˚42’58”– 22˚42’56” N; 114˚32’16”– 114˚32’25” E) from the mouth of a euryhaline

fish species, Mugil cephalus Linnaeus 1758. Live parasites were kept alive in 0.6% saline as long

as possible (one day) to ensure that they were starved, and then stored in 75% ethanol at 4˚C.

Specimens were morphologically identified under a dissecting microscope as described before

[1,3,45,46]. After washing in distilled water, DNA was isolated from one specimen using

Aidlab DNA extraction kit (Aidlab Biotechnologies, Beijing, China). This study has been

reviewed and approved by the ethics committee of the Institute of Hydrobiology, Chinese

Academy of Sciences. As the study involved an unregulated parasitic invertebrate, and as we

obtained the samples from already dead fish bought on a local fish market, no permits were

required to retrieve and process the samples.

Genome sequencing and assembly

Ten primer pairs used to amplify and sequence the entire mitogenome were designed to

match conserved regions of mitochondrial genes and to overlap by approximately 100 bp

(Table 2). Amplification reaction mixture and conditions used were described before [17];

briefly: 50μL with 5 U/μL of TaKaRa LA Taq polymerase (TaKaRa, Japan), 10×LATaq

Buffer II, 2.5μM dNTP mixture, 0.2–1.0μM each primer, 60ng DNA template. Conditions:

denaturation 98˚C/2min, and 40 cycles of 98˚C/10s, 50˚C/15s, 68˚C/1min per kb. When the

product was not specific enough, PCR conditions were optimized by increasing the anneal-

ing temperature and decreasing the number of cycles. PCR products were sequenced using

Sanger method and the same set of primers. All obtained fragments were quality-proofed by

visually inspecting the electropherograms and BLASTed [47] to confirm that the amplicon

is the actual target sequence. Mitogenome was assembled, annotated, and comparative anal-

yses conducted, roughly as described previously [17,48]. Briefly: assembly was conducted

manually using DNAstar v7.1 [49]. In each step we checked whether overlaps were identical,

thereby making sure that the mitogenome is circular, and avoiding incorporation of numts
[50] into the sequence. The same software was also used to locate the putative ORFs for pro-

tein-coding genes. BLAST and BLASTx were used to compare the inferred ORFs with

nucleotide and amino acid sequences of available orthologs, and manually determine the

exact initiation and termination codon positions accordingly. tRNAs were annotated using

tRNAscan [51] and ARWEN [41] tools, and the results checked manually. The annotation

was recorded in a Word (Microsoft Office) document, and then parsed and extracted using

an in-house MitoTool software [52]. The same software was also used for file conversions

(including the creation of the GenBank file) and to generate tables with comparative mito-

genomic statistics (including the file used to visualise gene orders in iTOL). Palindromes in
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the CR were predicted using Palindrome analyser [53]. The mitogenome is available from

the GenBank repository under the accession number MH396438.

Phylogenetic analyses

Three complete and 15 partial isopod sequences were retrieved from the GenBank for the phy-

logenetic analyses. A basal arthropod, Limulus polyphemus [31], and a Malacostraca species

basal to Isopoda [32], Euphausia pacifica [54], were used as outgroups. To maximize the amount

of phylogenetic signal, we conducted the analyses on a dataset containing all genes (PCGs and

RNAs). Genes were extracted from GenBank files using MitoTool. Nucleotide sequences of pro-

tein-coding genes were aligned in batches (using codon-alignment mode) with MAFFT [55]

integrated into another in-house software package—BioSuite [56]. As described before [57],

RNAs were aligned by an algorithm that takes secondary structure information into account,

Q-INS-i, incorporated into MAFFT-with-extensions software [58]. BioSuite was then used to

concatenate the alignments, and another plug-in program in BioSuite, Gblocks [59,60], was

used to remove ambiguously aligned regions [59,60]. As a result, although a majority of mito-

genomes used for the analysis were incomplete, the final alignment (S3 File) had a relatively low

proportion of gaps and undetermined characters (7.68%) and a high number of distinct align-

ment patterns (9,641). Best partitioning scheme and evolutionary models for partitions (GTR+I

+G, GTR+G; S4 File) were selected using PartitionFinder [61], also implemented in BioSuite.

Phylogenetic analyses were conducted using Bayesian Inference method implemented in

MrBayes 3.2.6 [62] (default settings, two parallel runs, five million MCMC generations) and

Maximum Likelihood method implemented in RAxML 8.1.21 [63] (1000 rapid bootstrap repli-

cates). Phylograms and gene orders were visualized in iTOL [64]. WoRMS database [65] was

used as the authority for the taxonomic nomenclature.

Table 2. Primers used for amplification and sequencing of the mitochondrial genome of Cymothoa indica.

Gene/region Name Sequence (5’-3’) Length

COX1 LYF1 GCTGGGATATTAGGTCTTAG 1436

LYR1 GAGTGTTCGGAGGGAGGGAA

COX1-COX2 LYF2 GACGTTATTCAGATTACCCTG 663

LYR2 GGATAACAAGTTTGTTATCTG

COX2 LYF3 CTGATGAAACTTTTTCATCAC 356

LYR3 GAAACTATGATTTGCACCAC

COX2-COX3 LYF4 GGACAATCCCATCACTTGGG 1462

LYR4 TTAGGAGACAATCTTCTATG

COX3 LYF5 GATGTCTCACGAGAAGCAAG 442

LYR5 GAAAGCCATGAAAACCAGTAG

COX3-16S LYF6 CAATTATTCTTGGGATTAC 2402

LYR6 GACCCTAAGAATTTGAAGATC

16S LYF7 TACGCTGTTATCCCTAGAG 828

LYR7 CGTACCTTTAGCATTAGGG

16S-CYTB LYF8 GAAAAGAATTTCACATCTAAAG 5995

LYR8 CCAAAAGGGTTTCTTGATCC

CYTB LYF9 GCAATCCCATATATCGGTTC 370

LYR9 GAAAGTACCATTCAGGTTG

CYTB- COX1 LYF10 CGATCATTTACCCTTATAGAC 2247

LYR10 CGCCAATTATGATAGGTATAAC

https://doi.org/10.1371/journal.pone.0203089.t002
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Supporting information

S1 File. Comparative analyses of isopod mitogenomes. Worksheet A: taxonomy and basic

statistics for all available isopod mitogenomes. Worksheet B: ancestral gene orders. Worksheet

C: gene statistics for all available isopod mitogenomes (+ outgroups): gene sizes, start and ter-

minal codons. Species are represented by acronyms of their binomial scientific names (see

footnote). The new sequence (C. indica) and outgroups are shaded grey.

(XLSX)

S2 File. Alignment of selected isopod nad1 orthologs.

(FAS)

S3 File. Alignment of isopod mitogenomes used for phylogenetic analyses.

(FAS)

S4 File. PartitionFinder results: Partitioning and model selection.

(TXT)

S1 Fig. Maximum likelihood phylogenetic analysis conducted on a partial dataset. Four

genes missing from Janira maculosa were removed from the entire dataset: atp6, atp8, nad1
and nad5. See caption for Fig 3 for other details.

(TIF)
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eroplasmy. PLoS One. 2008;3. https://doi.org/10.1371/journal.pone.0002938 PMID: 18698356
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