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A B S T R A C T

Cymothoid isopods are a diverse group of ectoparasites of fish species, and are particularly conspicuous as they
are large and attach to the body surface, mouth, and gill chamber of fish hosts. These parasites transition from
juvenile to male to female, and how their size changes with ontogeny and correlates with host size is not well
understood. To better understand these relationships, data from field and museum collected samples of South
Africa were combined to test for the associations between host and parasite length for three mouth and one gill
chamber-infesting genera (Ceratothoa, Cinusa, Cymothoa, and Mothocya respectively). Generally, the number of
parasites collected from 90 h of museum surveying was similar to that of seven, one-week long field collections.
For two of the three mouth-infesting parasites, parasite and host size were significantly and positively correlated
for males and females, but not juveniles. For gill chamber-infesting parasites, female and male parasite sizes
were weakly and not significantly correlated with host size. These results provide the first morphometric data
and growth relationship data for African cymothoid species and their fish hosts, and demonstrate the value and
efficiency of using museum collections in ecological research.

1. Introduction

Among the most conspicuous ectoparasites of marine fishes are
those of the family Cymothoidae. Cymothoids are proportionally large
relative to their host, and they infest the buccal cavity, gill chamber,
body surface, and body cavity of fishes (Smit et al., 2014). Parasites of
this family are particularly diverse with respect to their distribution and
host specificity. For example, Cymothoa sodwana Hadfield, Bruce &
Smit, 2013 is found only in one location and on a single host species
(Hadfield et al., 2013), and others such as Norileca indica Milne Ed-
wards, 1840 are less host specific such that they are reported from eight
fish species and have expansive distributions (Van der Wal et al., 2017).
To date, taxonomists have described 43 cymothoid genera and ap-
proximately 369 species (Boyko et al., 2008 onwards), and these
numbers are continuing to increase.

Our growing knowledge on the diversity and ecology of cymothoid
ectoparasites is mainly limited to the adult female parasites.
Cymothoids are protandric hermaphrodites, such that they mature from
juvenile to male to female, and generally they increase in length and
mass with development (Adlard and Lester, 1994; Bunkley-Williams
and Williams, 1998). Juveniles and males are substantially under-
studied (i.e. Williams and Bunkley-Williams, 1994) compared to adult

females because they are smaller than females, making in situ ob-
servation difficult. There is also generally less known about buccal and
gill infesting parasites, as they are also difficult to observe in situ as the
mouth or operculum conceals them. Another challenge in observing
cymothoids is the ability to locate them as their distribution appears
spatially highly variable and the prevalence of infection can be very low
and highly inconsistent among fish populations (Welicky and Sikkel,
2014). Hence, collecting field data on cymothoids to understand their
ecology is particularly challenging with respect to time and space.
There are few ecological studies on cymothoids, and often these studies
take several years to collect enough data for adequate testable sample
sizes, and they only focus on the adult parasites (Parker and Booth,
2013; Carrassón and Cribb, 2014; Welicky and Sikkel, 2015; Welicky
et al., 2018). Such high-risk, low yield data collection has limited the
rate at which we are able to learn about cymothoid ecology.

Recent studies have utilised parasites as indicators of ecosystem
health (Sures et al., 2017; Vidal-Martínez and Wunderlich, 2017), and
some cymothoids are quite noticeable, making them an ideal model
parasite to serve as a bioindicator. Yet, before we can use these para-
sites as indicators of ecosystem health, we must better understand their
life history and relationships with their fish hosts. Until now, such data
remains sparse, mainly species-specific, and limited to localities from
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the Caribbean, Indo Pacific, and Mediterranean (i.e. Fogelman et al.,
2009; Heagney et al., 2013; Roche et al., 2013, Pawluk et al., 2015). In
order to obtain information on a diversity of cymothoids, in under-
studied locations, and in a time and cost efficient manner, alternative
methods to field collection should be explored and undertaken. One
such means of collection is to use preserved fish collections where an-
glers and researchers have donated fishes to museums. The possibility
exists that when fish were preserved, they were infested with buccal or
gill cymothoids that were subsequently trapped inside their hosts. This
would then present an opportunity to gather morphometric and pre-
valence information on these parasites, from a wide variety of fishes
collected over an expansive distribution and in a more cost and time
efficient manner than field collections.

Thus the aim of this study was to understand the growth relation-
ships between African cymothoid fish parasitic isopods and their hosts
using specimens from museum and field collections. The data were
examined for correlations between host and parasite length, and to
determine if host size may constrain parasite size.

2. Methods

During 2009 and 2010, the South African Institute for Aquatic
Biodiversity (SAIAB) marine fish collections were examined for fishes
with cymothoid infections. Each fish was examined for cymothoids by
visually surveying the gills and mouths of potential host species (Fig. 1).
The total number of fishes surveyed was recorded. If parasites were
observed, the total length of the host was recorded (in mm), and the
parasite(s) was carefully extracted using forceps to not damage the host
fish. Collected parasites were identified to species level, identified as
juvenile, male or female, and their total length (in mm) was recorded.
Parasites were generally in good condition such that their bodies were
not bent or deformed. If an isopod appeared bent, it was gently
straightened by pressing on the center of its body and then measured.
This entire process took approximately 90 h to complete. To ensure
accurate identification, species were verified using the relevant litera-
ture (Hadfield et al., 2010, 2013, 2014, 2015). Data on fish mass were
not recorded as samples were preserved differently, thereby altering
their masses and lacking consistency across specimens for relative
comparisons. Additional specimens (n= 119) were obtained from
week-long sampling trips to Tsitsikamma National Park (34°1′S,
23°52′E) in 2005, 2016, and 2017; Sodwana Bay (27°32′S, 32°41′E) in
2010, 2017 and 2018; and St. Francis Bay in 2018 (34°10′S, 24°51′E)

(Table 2, Fig. 2). These collection trips formed part of other research
programs and targeted fish species previously reported to host parasitic
isopods. Fish were collected using rod and reel techniques and fol-
lowing the guidelines of the relevant ethical clearance and natural re-
source permits. Fish and parasite morphometric data were collected in
the same manner as the preserved fish from the museum.

Descriptive statistics on the length for all fishes, and parasites sub-
divided by stage were calculated. To determine the efficiency of
searching for parasites through museum species versus angling for
parasites on fishes known to be infested, the average number and
standard deviation of parasites collected per method were calculated.
For museum specimens, the percent of parasitised fish per fish species
observed was calculated and is herein referred to as prevalence.
Prevalence of field collected specimens was not calculated because
these collections were part of other projects and numbers of uninfested
fish were not recorded.

The association between parasite and host length was determined
using Pearson correlation coefficients for both male and female para-
sites (Pawluk et al., 2015). Additionally, the association between males
and females from the same host were also tested with a Pearson cor-
relation coefficient. Normality of the datasets was tested using Shapiro
Wilk's test prior to analysis, and data were not normally distributed.
Accordingly, Wilcoxon rank sum tests were used to determine if at-
tachment site is a predictor of parasite size, and if there were significant
associations between attachment site and proportional parasite size by
parasite life stage (male, female). The response variable, proportional
parasite size, was calculated by dividing parasite size by host size, as a
mechanism to control for confounding correlations between host and
parasite size (as reported below), and general size/age differences
among species. These tests were conducted three times. First, attach-
ment site was divided into two levels, buccal and gill dwelling. Second,
attachment site was divided into three levels, palate, tongue, and gill
dwelling. Third, attachment site was divided into two levels, palate and
tongue to better determine if small spatial differences within the buccal
cavity influenced parasite size.

3. Results

A total of eight fish species and six parasite species were identified
among the museum and field collections (Fig. 1). The fish collections
from SAIAB included specimens that were collected over approximately
100 years (c.1905–2005) and from various sites. Over 1,700 fish were

Fig. 1. Isopods preserved along with their fish hosts from the South African Institute for Aquatic Biodiversity (SAIAB). A. Ceratothoa famosa Hadfield, Bruce & Smit,
2014 in the mouth of Diplodus capensis (Smith, 1844); B. Mothocya affinis Hadfield, Bruce & Smit, 2015 in the gills of Hyporhamphus affinis (Günther, 1866); C.
Cymothoa sodwana Hadfield, Bruce & Smit, 2013 in the mouth of Trachinotus botla (Shaw, 1803).
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examined from the museum collections including two species that were
not caught in the field (Table 1). These two species were Ceratothoa
africanae Hadfield, Bruce & Smit, 2014 and Ceratothoa carinata (Bian-
coni, 1869). Parasite prevalence in the various hosts ranged from 3.6 to
17.4%. Museum collection trips generally provided more data on ju-
venile parasites and fishes than field collection trips (Fig. 2). For most
fish species, the average number of parasites collected over 3–4 field
trips was similar to that observed in one museum trip (Fig. 2).

A large range in fish and parasite size by species was observed for
most fishes. This was most apparent for the Cape white seabream,
Diplodus capensis (Smith, 1844) and the white musselcracker, Sparadon
durbanensis (Castelnau, 1861). Only two fishes were observed rarely
infested which included Spondylisoma emarginatum (Valciennes, 1830)
and Selar crumenophtalmus (Bloch, 1793). For parasites, females were
consistently larger than male conspecifics, ranging from 1.5 to 3.1 times
the size of males (Table 2). With the exception of Ceratothoa carinata,
juvenile parasites were on average about one-third to one-half the
length of males (Table 2). Juvenile parasites were rarely observed on
fish that were parasitised with adult parasites.

For all buccal male and female parasites, except male Cymothoa

sodwana, there were significant relationships between host and parasite
size (Fig. 3). The strengths of these relationships were weak except for
Ceratothoa famosa Hadfield, Bruce & Smit, 2014 (Fig. 3A and B). For
juvenile buccal parasites (Fig. 4), only C. famosa demonstrated a sig-
nificant relationship with host size, but this relationship was weak
(Fig. 4B). For gill chamber dwelling female and male Mothocya affinis
Hadfield, Bruce & Smit, 2015, there were weak and non-significant
associations with host size (Fig. 3G and H). The results of the male –
female length relationships indicated a significant positive correlation
for C. famosa (R2= 0.89; p=0.0001), C. sodwana (R2= 0.44;
p=0.0002), Cinusa tetrodontis Schioedte & Meinert, 1884 (R2=0.46;
p < 0.0001) and M. affinis (R2= 0.67; p=0.001).

Attachment site significantly influenced proportional parasite size
for females and males in our analyses when comparing buccal and gill
attachments, and palate, tongue, and gill attachments. Interestingly,
there were significant proportional size differences between female
parasites that infest locations that are within the same cavity, but this
was not the case for the males (Table 3). Accordingly, palate-dwelling
female parasites (Cinusa tetrodontis) were proportionally larger than
tongue-dwelling parasites (Ceratothoa africanae, C. carinata, C. famosa

Fig. 2. The total number, mean number and standard deviation of parasites collected from the South African Institute for Aquatic Biodiversity and fieldwork,
respectively. J= juvenile, M=male, F= female. Attachment type indicated as: B=buccal, T= tongue, P= palate, G= gill.

Table 1
The total number of fishes searched at the South African Institute for Aquatic Biodiversity (SAIAB), including the prevalence of infection for each species.

Year Fish species Total fish No. Fish infested Prevalence (%) Isopod species

2009 Amblyrhynchotes honckenii 226 16 7.1 Cinusa tetrodontis
Diplodus capensis 1004 84 8.4 Ceratothoa famosa
Sparadon durbanensis 100 12 12.0 Ceratothoa famosa
Spondyliosoma emarginatum 68 4 5.9 Ceratothoa africanae

2010 Diplodus hottentotus 366 28 7.7 Ceratothoa famosa
Hyporhamphus affinis 112 4 3.6 Mothocya affinis
Selar crumenophthalmus 39 3 7.7 Ceratothoa carinata
Trachinotus botla 23 4 17.4 Cymothoa sodwana
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and Cymothoa sodwana), and no significant differences were observed
between palate- and tongue-dwelling males (Table 3).

4. Discussion

The prevalence of South African cymothoids from the SAIAB mu-
seum was generally smaller than what is reported for other cymothoid
taxa from sampling localities around the world. Sala-Bozano et al.
(2012) reported prevalence of 47% and 30% for Ceratothoa italica
Schioedte & Meinert, 1883 in the Tyrrhenian Sea and Balearic Sea,
respectively, whereas prevalence of C. famosa from all South African
fish hosts was only 9%. Moreover, Chávez-López et al. (2005) reported
a 46.3% prevalence of gill-dwelling Elthusa alvaradoensis Rocha-Ra-
mírez, Chávez-López & Bruce, 2005 off the continental shelf in Mexico.
This prevalence is ∼13 times higher than the prevalence of gill-
dwelling, M. affinis. Only C. sodwana, had similar prevalence (17.4%) to
another species of Cymothoa (19%) (Cook and Munguia, 2015). The fact
that the prevalence of South African cymothoids was smaller than the
aforementioned studies, but we examined more samples representing a
longer time frame, highlights that natural prevalence of cymothoids
from South Africa is likely naturally smaller. It is plausible that pre-
valence is associated with environmental conditions and climate, and/
or species differences, but the mechanisms that influence prevalence
are not well-understood, and further studies are needed to address these
unknowns.

The findings of the correlation analyses support previously docu-
mented patterns of adult parasite length being positively correlated
with host length, and that females are typically twice the size of males
(Alvarez and Flores, 1997; Cook and Munguia, 2015; Pawluk et al.,
2015). When examining the morphometric data and correlation ana-
lyses, it appears that host size constrains parasite size (Tsai et al., 2001;
Pawluk et al., 2015). This is likely an artefact of attachment site, and
size constraint becomes seemingly more evident with parasite ontoge-
netic development as the parasites grow larger. For juveniles, no strong
significant relationships with host size were observed. This may reflect
that juveniles are relatively small compared to the area in which they
infest, such that their growth may not be limited by the size of the area
that they infest. For adult parasites, there were stronger positive and
significant relationships with host size for buccal parasites compared to
gill parasites. This likely reflects that the space provided by the buccal
cavity is relatively larger than that of the gill chamber for the fishes
surveyed, thereby providing more space for buccal parasites to grow.

The findings of the correlative analyses, and the explanations

thereof, are consistent with the findings when host size is controlled for
and proportional parasite size is examined for associations with at-
tachment site and parasite gender. Overall, buccal parasites were sig-
nificantly larger than gill parasites. Palate-infesting females were larger
than tongue-infesting females, but there was no difference in size be-
tween palate- and tongue-infesting males. The palate likely provides
more space to grow than the glossohyal, and the amount of available
space to grow decreases as the parasite develops from male to female.
Accordingly, males are not space-limited like females. Juveniles also
appear to not be space-limited, or demonstrate preference for attach-
ment site, particularly when a superinfestation occurs (Williams and
Bunkley-Williams, 1994). To better understand these fine scale patterns
and differences, morphological analyses should be paired with geo-
metric and phylogenetic analyses in the future.

The most applied outcome of this research is that we have demon-
strated that the use of museum collections to obtain ecological data on
rare and difficult to collect species is highly efficient compared to field
data collection. We note that SAIAB collections consisted primarily of
juvenile fish and parasites. While in situ research along the coasts of
South Africa could likely collect the same organisms, such research
typically occurs over a much longer period of time because permit
regulations restrict annual numbers of fishes that can be collected, and
some collection trips are less successful than others due to un-
predictable turbidity, roughness, and site accessibility conditions.
Museum collections that have specimens catalogued with their locality
data are also particularly useful for determining the broad regions in
which field collections are likely to be most successful. Accordingly,
museum collections provide a more time efficient and pragmatic ap-
proach than field collections, and this approach should be considered
when applicable, particularly for difficult to study organisms.
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Fig. 3. The relationship between cymothoid size and host size for female and male parasites by parasite species.
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