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Abstract

The freshwater isopod crustacean Asellus aquaticus has recently been developed as an

emerging invertebrate cave model for studying evolutionary and developmental biology.

Mostly morphological and genetic differences between cave and surface A. aquaticus popu-

lations have been described up to now, while scarce data are available on other aspects,

including physiology. The purpose of this study was to advance our understanding of the

physiological differences between cave A. aquaticus and its surface-dwelling counterparts.

We sampled two surface populations from the surface section of the sinking Pivka River

(central Slovenia, Europe), i.e. locality Pivka Polje, and locality Planina Polje, and one cave

population from the subterranean section of the sinking Pivka River, i.e. locality Planina

Cave. Animals were sampled in spring, summer and autumn. We measured the activities of

acetylcholinesterase (AChE) and glutathione S-transferase (GST) in individuals snap-

frozen in the field immediately after collection. Acetylcholinesterase is likely related to ani-

mals’ locomotor activity, while GST activity is related to the metabolic activity of an organ-

ism. Our study shows significantly lower AChE and GST activities in the cave population in

comparison to both surface A. aquaticus populations. This confirms the assumption that

cave A. aquaticus have lower locomotor and metabolic activity than surface A. aquaticus in

their respective natural environments. In surface A. aquaticus populations, seasonal fluctua-

tions in GST activity were observed, while these were less pronounced in individuals from

the more stable cave environment. On the other hand, AChE activity was generally season-

independent in all populations. To our knowledge, this is the first study of its kind conducted

in A. aquaticus. Our results show that among closely related cave and surface A. aquaticus

populations also physiological differences are present besides the morphological and

genetic. These findings contribute to a better understanding of the biology of A. aquaticus

and cave crustaceans in general.
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Zidar P (2017) Comparative study of

acetylcholinesterase and glutathione S-transferase

activities of closely related cave and surface Asellus

aquaticus (Isopoda: Crustacea). PLoS ONE 12(5):

e0176746. https://doi.org/10.1371/journal.

pone.0176746
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Introduction

The freshwater isopod water louse, Asellus aquaticus (L.) (Isopoda: Crustacea), is a benthic

crustacean with several important roles in freshwater ecosystems. It inhabits various freshwa-

ter habitats throughout most of Europe, including caves [1], [2]. The species exhibits strong

genetic structuring in the southern and eastern part of its range [3], [4], [5]. Genetically dis-

tinct cave populations that resulted from polytopic and polychronous immigration to the cave

environment still have their surface counterparts [4], [6], [7]. Pairs of surface and cave popula-

tions have gained increasing recognition as a model system to address questions of evolution-

ary parallelism and convergence [8], [9], [10].

The transition of organisms from surface to cave habitats presumably underlies adaptations

at all levels of biological organization: morphology [9], [11], [12], [13], [14], physiology [15],

[16], [17], [18], behaviour [16], [19], [20], and life histories [21], [22], [23]. Among these,

mostly morphological [2], [24] and genetic differences [4], [6], [7], [8] between cave and sur-

face A. aquaticus populations have been described, while scarce data are available on other

aspects, including physiology. To our knowledge, only one physiological study comparing the

cave and surface A. aquaticus has been carried out, and that was on respiration rate [25]. On

the other hand, quite a few studies on presumable physiological adaptations of other cave crus-

taceans, such as different energy saving mechanisms, are available. These showed that many

cave crustaceans have an amazing ability to endure starvation over prolonged periods of time

due to their enhanced capacity for food storage [17], diminished locomotor activity [17], [18],

and lower metabolic activity [16], [18], [26], [27], [28].

The purpose of this study was to advance our understanding of the physiological differences

between the cave and surface A. aquaticus. While previous studies assessed the physiological

state of some cave and surface crustaceans after a certain period of acclimation in the labora-

tory [18], [26], we measured the activities of two physiologically important enzymes in individ-

uals snap-frozen immediately after collection. Acetylcholinesterase (AChE) plays a major role

in cholinergic signal transmission in the sensory and neuromuscular systems and therefore

appears to be likely related to animals’ locomotor activity [29], [30], [31]. Glutathione S-

transferases (GSTs) are a family of multifunctional enzymes that play a central role in the

detoxification of both endogenous and xenobiotic compounds and are also involved in intra-

cellular transport, biosynthesis of hormones and protection against oxidative stress [32], [33],

[34]. Some studies suggest that GST activity could be directly related to the metabolic activity

of an organism. It is commonly assumed that higher metabolism leads to higher reactive oxy-

gen species (ROS) production and results in higher GST activities [26], [35], [36], [37]. How-

ever, ROS levels and GST activities were also demonstrated to be increased under hypoxia

(anoxia) and metabolic depression [38], [39], showing that the GST activity rate is not always

representative of the basal metabolic rate.

The aim of this paper was to investigate whether AChE and GST activities differ between

the cave A. aquaticus and its surface-dwelling counterparts, both living in well-oxygenated

water. As cave animals are expected to have a reduced level of locomotor and metabolic

activities, we hypothesized that generally there would be lower AChE and GST activities in

cave compared to surface individuals. Due to more stable environmental conditions in

caves, cave individuals were also expected to exhibit less season-dependent enzyme

activities, in contrast to surface individuals, where considerable season-dependent enzyme

activities were anticipated in accordance with evidence from studies on other crustaceans

[40], [41].

Enzyme activities in cave and surface Asellus
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Materials and methods

Chemicals

The following chemicals were purchased from Sigma (Germany): dibasic and monobasic

potassium phosphate; 1-chloro-2,4-dinitrobenzene; L-glutathione (reduced form);

5,5-dithiobis(2-nitrobenzoic acid); sodium hydrogen carbonate; acetylthiocholine iodide. BCA

Protein Assay Reagents A and B, cadmium chloride, and potassium dichromate were pur-

chased from Pierce (U.S.A.). All chemicals were of the highest commercially available grade,

typically 99% or higher.

Study system and field work

Closely related cave and surface populations of A. aquaticus, which inhabit subterranean and

surface stretches of the sinking river Pivka (central Slovenia, Europe), provided an ideal eco-

logical setup for the needs of our study. We sampled two surface populations from the river

stretches flowing across two large enclosed karstic planes: (i) just prior to the river’s sink at

Pivka Polje and (ii) after its resurgence on Planina Polje, and one cave population from (iii)

the river’s subterranean section in the Planina Cave (Table 1, Fig 1). To account for seasonal

differences in enzymatic activity, we conducted three samplings: spring, summer and autumn

(Table 1). Each time 15 adult individuals regardless of sex, yet excluding ovigerous females,

were collected from each population on the same day (hereafter referred to as a sample). Ani-

mals were snap-frozen on dry ice on site and immediately transferred to the laboratory where

they were stored at -20˚C until enzyme analysis. A reliable sex determination of A. aquaticus
requires a careful examination of animal’s appendages (gonopods and peraeopod IV) under

the stereo microscope. During this procedure we would risk that the specimens would warm

up, which could endanger reliable enzyme measurements. We therefore did not determine the

sex of each individual. During each sampling, we also measured physical and chemical proper-

ties of water at the sample site, i.e. temperature, dissolved oxygen concentration, conductivity,

and pH, using a portable multimeter CyberScan 600 (Eutech Instruments).

Enzyme analysis

Prior to enzyme analysis, the fresh mass of all individuals was measured (S1 Fig). Whole body

homogenates were prepared in 650 μL of 50 mM phosphate buffer (pH 7.0) with 0.5% triton

Table 1. Information about sampling localities, taxa and dates of collection.

Locality Slovene name WGS84 coordinates Taxon1 Ecomorph Date of collection

Planina Cave2 Planinska jama N 45.81990, E 14.245673 A. a. cavernicolus cave spring: 18.3.2015

summer: 17.7.2015

autumn: 12.10.2015

Planina Polje Planinsko polje N 45.86872, E 14.24313 A. a. carniolicus surface spring: 18.3.2015

summer: 17.7.2015

autumn: 12.10.2015

Pivka Polje Pivško polje N 45.78137, E 14.20462 A. a. aquaticus surface spring: 18.3.2015

summer: 17.7.2015

autumn: 12.10.2015

1 Taxon names were assigned according to the currently valid taxonomy [1].
2 Two distinct cave populations of A. aquaticus inhabit the Planina Cave. In this study, the population from the Pivka River Channel, collected about 1 km

from the cave entrance was used.
3 Coordinates for the cave locality were taken at the cave entrance.

https://doi.org/10.1371/journal.pone.0176746.t001
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Fig 1. Sampling localities of Asellus aquaticus. (Digital elevation model is based on LIDAR (Light Detecting and Ranging) data freely available from

ARSO—Slovenian Environment Agency at http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso).

https://doi.org/10.1371/journal.pone.0176746.g001
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X100 using a T10 IKA Ultra-turrax homogenizer. The homogenate was centrifuged for 15 min

at 16000 g and 4˚C. Enzyme activities were measured on freshly prepared supernatants for

each sample in triplicate.

AChE activity was determined according to the method of Ellman et al. [42] using microti-

ter plates as described by Jemec et al. [43]. Kinetic measurements were performed using acet-

ylthiocholine iodide as a substrate (final concentration 1 mM). We mixed 1 M

acetylthiocholine iodide and 2.3 mM 5,5-dithiobis(2-nitrobenzoic acid) in 1:500 (v/v) ratio. A

total of 100 μL of this mixture was applied to the microtiter plate, where 50 μL of 50 mM potas-

sium phosphate buffer (pH 7.0) and 50 μL of protein supernatant had already been added. The

reaction was followed spectrophotometrically at 405 nm and 25˚C for 5 min using a microplate

reader (Anthos, UK).

GST activity was measured according to the method by Habig et al. [44] and optimized for

microtiter plates [43] using 1,2-dichloro-4-nitrobenzene (CDNB) as a substrate. The final con-

centrations of substrates and reagents were: 4 mM of CDNB and 1 mM of reduced glutathione.

CDNB was dissolved in ethanol and further diluted in 50 mM potassium phosphate buffer

(pH 7.0) to final concentrations. The concentration of ethanol in the final reaction solution

was less than 1% (v/v). We added 50 μl of the protein supernatant to start the reaction, which

was followed spectrophotometrically at 340 nm and 25˚C for 3 min using a microplate reader

(Anthos, UK).

Protein concentration of the supernatants for enzyme analysis was measured using the

BCA™ Protein Assay Kit, a modification of the bicinchoninic acid protein assay (Pierce, Rock-

ford, IL, USA).

The AChE activity was calculated as nmoles of hydrolysed acetylthiocholine iodide/min/mg

protein (extinction coefficient Ɛ412 = 13600 M-1cm-1) and GST activity as nmoles of hydrolysed

CDNB/min/mg protein (extinction coefficient Ɛ340 = 9600 M-1cm-1). Hereafter, both of these

are referred as an enzyme unit (EU). Protein concentration was calculated using bovine serum

albumin as a reference.

Data analysis

Data were statistically analysed in R 3.3.2 [45]. As variance was non-homogenous between

groups, we employed a robust two-way ANOVA implemented in the R package WRS2 [46]

with a pbad2way() function; a modified one-step M-estimator based on Huber’s Psi was used

as a robust measure of central tendency (est parameter set to “mom”). Note that the M-

estimators of the central tendency values were close to the mean values in all cases. A separate

ANOVA model was run for each enzyme, i.e. AChE and GST. Enzyme activity served as a con-

tinuous response variable while population (Planina Cave, Planina Polje, Pivka Polje) and sea-

son (spring, summer, autumn) were included as categorical explanatory variables, whose

interaction was tested as well. Biologically meaningful pairwise comparisons among groups

were tested using the pb2gen() function and p-values were adjusted according to Benjamini &

Hochberg [47]. Variability of samples was assessed using a robust measure of variability analo-

gous to the standard deviation, i.e. median absolute deviation (MAD). Hereafter, we use the

term significant difference to refer to statistically significant difference. All plots were drawn

with OriginPro 8.0.

Results

AChE and GST activities

Two-way robust ANOVA showed the same general pattern in AChE and GST: enzyme activi-

ties were noticeably lower in the cave population than in either surface population (Table 2,
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Table 2. Pairwise comparisons of AChE and GST activity among cave and surface Asellus aquaticus samples.

AChE GST

BETWEEN POPULATIONS/WITHIN SEASON M-estimator1 [95% CI] p-value M-estimator1 [95% CI] p-value

Planina Cave (sp)–Planina Polje (sp) -6.92 [-8.72, -5.24] < 0.001 2.50 [-3.05, 8.07] 0.433

Planina Cave (sp)–Pivka Polje (sp) -7.33 [-10.6, -3.78] < 0.001 -22.99 [-36.08, -6.79] 0.003

Pivka Polje (sp)–Planina Polje (sp) 0.41 [-3.65, 3.62] 0.830 25.49 [9.87, 37.06] < 0.001

Planina Cave (su)–Planina Polje (su) -15.08 [-18.48, -11.24] < 0.001 -47.07 [-71.76, -29.99] < 0.001

Planina Cave (su)–Pivka Polje (su) -8.35 [-11.89, -5.02] < 0.001 -42.19 [-58.07, -19.19] < 0.001

Pivka Polje (su)–Planina Polje (su) -6.73 [-11.41, -1.85] 0.021 -4.89 [-41.87, 18.21] 0.777

Planina Cave (au)–Planina Polje (au) -10.03 [-13.35, -7.23] < 0.001 -26.09 [-38.91, -14.32] < 0.001

Planina Cave (au)–Pivka Polje (au) -6.14 [-9.1, -3.47] < 0.001 -22.30 [-29.61, -14.21] < 0.001

Pivka Polje (au)–Planina Polje (au) -3.88 [-7.26, -0.77] 0.033 -3.79 [-16.49, 8.68] 0.518

BETWEEN SEASONS/WITHIN POPULATION M-estimator1 [95% CI] p-value M-estimator1 [95% CI] p-value

Planina Cave (sp)–Planina Cave (su) 1.13 [-2.37, 0.33] 0.231 0.38 [-7.69, 7.65] 0.935

Planina Cave (sp)–Planina Cave (au) -0.23 [-2.3, 2.07] 0.834 10.14 [3.35, 17.91] 0.012

Planina Cave (su)–Planina Cave (au) -1.36 [-3.24, 0.88] 0.457 9.75 [3.34, 17.77] 0.009

Planina Polje (sp)–Planina Polje (su) -7.03 [-10.48, -3.07] 0.001 -49.20 [-73.13, -33.89] < 0.001

Planina Polje (sp)–Planina Polje (au) -3.33 [-6.19, -0.64] 0.033 -18.46 [-31.12, -6.23] 0.002

Planina Polje (su)–Planina Polje (au) 3.70 [-0.88, 7.52] 0.189 30.74 [11.94, 61.59] 0.005

Pivka Polje (sp)–Pivka Polje (su) 0.11 [-4.18, 4.87] 0.756 -18.82 [-40.41, 6.98] 0.262

Pivka Polje (sp)–Pivka Polje (au) 0.96 [-2.99, 4.54] 0.632 10.82 [-4.85, 24.72] 0.240

Pivka Polje (su)–Pivka Polje (au) 0.85 [-3.06, 4.84] 0.944 29.64 [7.08, 46.22] 0.005

1 Modified one-step M-estimator based on Huber’s Psi used as a robust measure of central tendency.

Bold and underlined text indicates statistically significant differences.

Season abbreviation: sp—spring; su—summer; au—autumn.

https://doi.org/10.1371/journal.pone.0176746.t002

Fig 2. A) AChE activity in cave and surface Asellus aquaticus populations. B) Seasonal fluctuation in AChE activity in cave and surface Asellus

aquaticus populations. Asterisks indicate statistically significant differences among samples (* 0.05 < p < 0.01, ** 0.01 < p < 0.001, *** p < 0.001). M-

estimators of central tendency are shown as empty squares.

https://doi.org/10.1371/journal.pone.0176746.g002
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Figs 2A and 3A). Central values (see above) of AChE activity ranged between 3–4 EU in the

cave population. In surface populations these values were 2.5 to 6-times higher, ranging

between 10–11 EU and 11–18 EU in the Pivka Polje and Planina Polje populations, respec-

tively. Similarly, central values of GST activity ranged between 23–33 EU in the cave popula-

tion and were up to 2.5-times higher in both surface populations; between 45–75 EU and 30–

80 EU in the Pivka Polje and Planina Polje populations, respectively (Table 2). Furthermore,

between-individual variability in AChE and GST activity was generally lower in the cave popu-

lation compared to either surface population during all seasons, with the exception of a sligh-

tlyhly variable GST activity in the spring sample from Planina Polje (S1 Table).

Pairwise comparisons (Table 2) confirmed that AChE and GST activities were significantly

lower in the cave population compared to both surface populations in all seasons. Only the

insignificantly different GST activities of the Planina Cave and Planina Polje populations col-

lected in spring diverged from this pattern. The enzyme activities also differed between both

surface populations, although not in all seasons and with a smaller effect size. AChE activity in

the Planina Polje population was significantly higher in summer and autumn, while GST activ-

ity in the Pivka Polje population was higher in the spring.

According to the two-way robust ANOVA, seasonal fluctuation in enzyme activity in sur-

face populations was observed, yet it did not follow any clear trend. The interaction between

population and season was significant in both AChE (p = 0.012) and GST (p< 0.001), indicat-

ing that seasons had different effects on the enzyme activity of each population. For both

enzymes this was mainly due to their more pronounced seasonal fluctuation in the Planina

Polje population (see S2 Table for details). Pairwise comparisons revealed that seasonal fluctu-

ation was more pronounced in the GST than in the AChE activity in all populations (Table 2,

Figs 2B and 3B). The latter was almost constant in the Planina Cave and Pivka Polje samples,

while it was significantly lower in spring in the Planina Polje population. GST activity in the

Planina Cave population was significantly lower in autumn than in both other seasons while in

the Pivka Polje population the low autumn value significantly differed only from the higher

Fig 3. A) GST activity in cave and surface Asellus aquaticus populations. B) Seasonal fluctuation in GST activity in cave and surface Asellus

aquaticus populations. Asterisks indicate statistically significant differences among samples (** 0.01 < p < 0.001, *** p < 0.001). M-estimators of

central tendency are shown as empty squares.

https://doi.org/10.1371/journal.pone.0176746.g003
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summer value. On the other hand, GST activity in the Planina Polje population was signifi-

cantly lower in spring, as well as significantly higher in summer than in autumn.

Physical and chemical parameters of water at sampling localities

Water temperature and dissolved oxygen concentration are shown in Fig 4, while all values

of measured parameters are presented in S3 Table. As expected, variation in water temperature

in the Planina Cave was negligible during the year. In spring and autumn, temperatures

were similar at all three localities, while the summer temperatures at Pivka Polje and Planina

Polje were considerably higher. Dissolved oxygen concentration was slightly lower in Planina

Polje compared to Pivka Polje and Planina Cave, with mutually similar concentrations. Sum-

mer dissolved oxygen concentrations in Planina Cave and Planina Polje were lower than

those measured in spring and autumn, while no seasonal fluctuation was observed in Pivka

Polje. Water conductivity and pH were similar at all three localities throughout the year (see

S3 Table).

Fig 4. Water temperature and dissolved oxygen concentration at sampling localities.

https://doi.org/10.1371/journal.pone.0176746.g004
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Discussion

Our study shows significantly lower AChE and GST activities in the cave population compared

to both surface populations. These results support the suggested correlation between AChE

activity and animals’ locomotor activity [29], [30] and the correlation between GST activity

and animals’ metabolic rate [36]. Namely, lower metabolic and locomotor activity of cave ver-

sus surface crustaceans has been reported in several comparative studies on locomotor [17],

[18] and metabolic activities [16], [28], [48] of other cave and surface crustaceans. Decreased

metabolic rates have also been shown in predatory stygobiotic amblyopsid fish compared to

non-stygobiotic ones, presumably as a result of their adaptation to an energy-poor environ-

ment [49], [50].

Contrary, Mösslacher and Creuzé Des Châtelliers [25] observed higher locomotor activity

and higher respiration rate in A. aquaticus from the chemoautotrophic Movile Cave (Roma-

nia) compared to surface individuals from Austria. However, the experimental design of their

study was inappropriate to estimate animals’ locomotor activity since this behaviour was mea-

sured directly (i.e. by recording the time of movement), while animals simultaneously per-

formed another type of behaviour (i.e. feeding on decaying leaves). Even the authors of the

study have therefore acknowledged the high probability for biased results and speculative con-

clusions. Increased activity was also observed in characid Astyanax cavefish where it is a result

of enhanced food searching behaviour [51], [52] and reduced sleep duration [53]. One has to

consider though, that such behaviours likely provide an adaptive advantage to the predatory

stygobiotic vertebrate, while it is harder to imagine their similar benefits for a grazing inverte-

brate such as A. aquaticus.
In surface A. aquaticus populations, evident seasonal fluctuations in GST activity were

observed, while these were less pronounced in the cave population. There are a number of

potential reasons for the observed results. Firstly, multiple environmental parameters, such as

temperature [36], light intensity [27], [54], dissolved oxygen concentrations [38] and availabil-

ity of food [17] are known to affect the GST activity of crustaceans. These environmental

parameters are less variable in the stable cave environment compared to the surface [55],

which may explain the lower GST activity fluctuation in cave individuals. Secondly, while

mass of surface individuals differed significantly throughout the year, differences in mass were

not as pronounced in the cave population (S1 Fig). In surface populations, we collected and

compared three distinct generations over the three seasons [56], [57], [58], [59]. The overwin-

tering generation included extremely large individuals collected in spring, the spring-brood

generation included small individuals collected in summer, while a mixture of larger spring-

brood and smaller summer-brood individuals was collected in autumn. Mentioned genera-

tions differ from one another according to reproductive stage, which is known to influence

GST activity [60] via differences in metabolic activity. For example, it has been reported that

the spring-brood generation in A. aquaticus matures within around 3 months, compared to

the summer-brood generation that matures within about 6 months [58]. The described differ-

ences in life-histories are also the most plausible explanation for the single non-significant dif-

ference recorded between cave and surface populations used in our study, i.e. GST activity

between the Planina Cave and Planina Polje spring sample. The overwintering individuals

from Planina Polje were extremely large (S1 Fig) which may result in low GST activity as previ-

ously shown for other enzymes [41].

In contrast to the GST activity, the AChE activity at each locality did not vary throughout

the seasons. There are mutually contradictory literature data for AChE dependence on envi-

ronmental factors. While some authors report evident seasonal AChE fluctuation in crusta-

ceans [40], [60], [61], [62], others state that some environmental parameters, such as
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temperature and salinity, do not influence AChE activity when studied in laboratory experi-

ments [40], [63]. The only exception in our study was the surface population from Planina

Polje, which had significantly lower AChE activity in the spring. The reason for this phenome-

non remains unknown, but as already mentioned in the case of GST, we observed that the

overwintering individuals at this locality were much larger and heavier than those from the

other two seasons (S1 Fig). Similar observations were made by Xuereb et al. [41], where larger

individuals of the freshwater amphipod Gammarus fossarum had a lower AChE activity than

smaller ones.

Interestingly, larger variation in both enzyme activities was observed between surface than

between cave individuals. Our study design does not allow the distinction between genetic and

environmental causes for the observed differences. Nevertheless, the lower between-individual

variability in the cave A. aquaticus may be due to strong directional and stabilizing natural

selection for diminished locomotor and metabolic activity that supposedly increase fitness in

an energy-poor environment. Just as likely, the higher variability between surface individuals

could be due to the more variable environmental conditions at the surface. The same effect of

the stable vs. changing environment on the variability in GST activities was observed in terres-

trial isopods [43].

The employed enzymes are commonly used as biochemical biomarkers in routine environ-

mental quality biomonitoring programmes [64], [65]. It has been already suggested that a

number of environmental parameters and life-history traits of organisms could influence the

enzyme activities [66]. The current study is an additional proof that the AChE and GST activi-

ties vary considerably with regard to locality and season, probably as a result of differences in

environmental parameters and specific life-histories. Therefore, we suggest that potential

future biomonitoring studies employing A. aquaticus should be designed closely in line with

the results presented in this study.

To our knowledge, this is the first study of its kind conducted in A. aquaticus. In this model

organism, AChE has so far been measured only as a biomarker of pollution in laboratory expo-

sures [67], [68] and we found no records of GST measurements. Our future research will focus

on verifying the actual correlation between both enzymes and their physiological roles. Confir-

mation of a direct link between A. aquaticus AChE and GST activity with its locomotor and

metabolic activities would advance the use of biochemical approaches to studying both of

these latter activities. The main advantage of such measurements is the assessment of the ani-

mals’ physiological condition in-situ, i.e. at the time and site of collection, as opposed to labo-

ratory measurements that usually include an acclimation period. Namely, acclimation in the

laboratory has been shown to alter the physiology of some crustaceans [43], [69].

In conclusion, our results show that considerable physiological differences exist between

closely related cave and surface A. aquaticus populations. The lower AChE and GST activities

of the cave population probably reflect physiological adaptations to the specific conditions of

the cave environment. Seasonal fluctuation of GST enzyme activities was considerably more

pronounced in surface populations and is likely a consequence of the joint effect of fluctuating

environmental conditions and life histories. These findings contribute to a better understand-

ing of both the biology of A. aquaticus and cave crustaceans in general.
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65. Damásio JB, Barata C, Munné A, Ginebreda A, Guasch H, Sabater S et al.Comparing the response of

biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil

spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere. 2007; 66(7):1206–16. https://

doi.org/10.1016/j.chemosphere.2006.07.055 PMID: 16959291
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