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Abstract Behaviour links physiological function with

ecological processes and can be very sensitive towards

environmental stimuli and chemical exposure. As such,

behavioural indicators of toxicity are well suited for

assessing impacts of pesticides at sublethal concentrations

found in the environment. Recent developments in video-

tracking technologies offer the possibility of quantifying

behavioural patterns, particularly locomotion, which in

general has not been studied and understood very well for

aquatic macroinvertebrates to date. In this study, we aim to

determine the potential effects of exposure to two neuro-

toxic pesticides with different modes of action at different

concentrations (chlorpyrifos and imidacloprid) on the

locomotion behaviour of the water louse Asellus aquaticus.

We compare the effects of the different exposure regimes

on the behaviour of Asellus with the effects that the pres-

ence of food and shelter exhibit to estimate the ecological

relevance of behavioural changes. We found that sublethal

pesticide exposure reduced dispersal distances compared to

controls, whereby exposure to chlorpyrifos affected not

only animal activity but also step lengths while imidaclo-

prid only slightly affected step lengths. The presence of

natural cues such as food or shelter induced only minor

changes in behaviour, which hardly translated to changes in

dispersal potential. These findings illustrate that behaviour

can serve as a sensitive endpoint in toxicity assessments.

However, under natural conditions, depending on the

exposure concentration, the actual impacts might be out-

weighed by environmental conditions that an organism is

subjected to. It is, therefore, of importance that the

assessment of toxicity on behaviour is done under relevant

environmental conditions.

Keywords Locomotion � Dispersal � Automated video

tracking � Aquatic macroinvertebrates

Introduction

Arthropod populations form an integral part of freshwater

ecosystems and are, as such, often exposed to chemical and

physical disturbances such as nutrients, pollutants, habitat

destruction and flow alterations (Dudgeon et al. 2006). In

agro-ecosystems, pesticides used for plant protection in

particular can enter surface waters through spray drift, run

off, and draining, and affect non-target animal populations.

Hence, environmental risk assessments are required for

pesticides to minimize undesired side effects. Standard

tests comprise a battery of mortality, immobilization and

reproduction studies on single species in the lower tiers of

the assessment process. In the higher tiers, micro- and

mesocosms may be employed to evaluate ecological

community responses to different exposure concentrations

(Brock et al. 2006).

To improve the determination of ecologically relevant

risk levels, behavioural endpoints are increasingly inves-

tigated in ecotoxicological studies (Rodrigues et al. 2016).

They have been shown to be relevant and useful in acute
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and chronic environmental risk assessments because they

link physiological functions with ecological processes.

Behavioural endpoints are also very sensitive towards

environmental stimuli and chemical exposure (Dell’Omo

2002), and several studies assessing the environmental

risks of pesticides reported behavioural effects at concen-

trations significantly below those causing mortality (for

examples see Böttger et al. 2013; Agatz et al. 2014).

Locomotor behaviour is particularly vital to animal life as

it facilitates feeding, predator avoidance, reproduction, or

migration, and thus may link the effects of individual stress

to the population level (Bayley et al. 1997). This type of

behaviour can be studied easily via video tracking (Au-

gusiak and Van den Brink 2015; Rodrigues et al. 2016).

In aquatic environments, relocating macroinvertebrates

are likely to encounter contaminated stretches with residue

concentrations of pesticides. Depending on the mode of

action and concentration of the encountered pesticide, trav-

elling animals may be affected and their movement beha-

viour may be likely to change under such conditions.

Especially neurotoxic substances might adversely affect

orientation and activity. The observed alterations in activity,

furthermore, correlated with the measured contamination

gradient. Baatrup and Bayley (1993) showed that cyperme-

thrin exposure disrupted the general movement pattern and

activity of the Wolf Spider Pardosa amentata. However,

studies on the behavioural effect of toxicants on aquatic

crustaceans, so far mainly focused on feeding responses

(Böttger et al. 2013; Agatz et al. 2014), induction of drift

(Beketov and Liess 2008), breathing activity, and immobi-

lization (for example Rubach et al. 2011). Fewer studies

attempted quantification of more complex behaviour such as

precopulatory mate guarding (Blockwell et al. 1998) or

predator–prey interactions (Brooks et al. 2009) after sub-

lethal pesticide exposure. To estimate the impact of chemical

exposure on arthropod populations in an ecologically more

meaningful way, ecological effect models are increasingly

often applied to integrate different habitat, species, and

exposure related information to assess population recovery

timeframes (Galic et al. 2013; Focks et al. 2014). Accounting

for immigrating and emigrating individuals is essential to

improve the mechanistic understanding derived from such

modelling studies (Focks et al. 2014; Hommen et al. 2015).

With the present study, we present a method to test the

effects of chemical exposure on macroinvertebrate move-

ment, and to improve the understanding of the potential

effects of exposure to neurotoxic pesticides, in this case

chlorpyrifos and imidacloprid, on the water louse Asellus

aquaticus. To establish a broader knowledge of the back-

ground levels and variance of the movement responses we

included observations of non-exposed specimens under

environmentally relevant scenarios such as the presence or

absence of food and shelter items.

Imidacloprid is a selective and systemic insecticide

belonging to the group of neonicotinoids that agonistically

affect nicotinic acetylcholine receptors (nAChRs) of

insects (Matsuda et al. 2001). Chlorpyrifos, on the other

hand, is an organophosphate insecticide that inhibits

acetylcholine esterase, which is essential to nerve function

in insects, humans, and other animals (Pope 2010), thus

acting as a broad-spectrum agent (Song et al. 1997).

Exposure to either substance, however, can eventually

cause paralysis and death. We aimed to test whether the

differences in mode of action would lead to different

effects on the locomotion behaviour and whether the

responses are concentration-dependent.

A. aquaticus is widely distributed throughout Europe,

and is relatively sensitive to insecticides (Wogram and

Liess 2001). As consumers at an intermediate trophic level,

they also fulfil an important role in the nutrient cycling of

aquatic ecosystems (Wallace and Webster 1996). Their

population recovery processes are limited since the species

has a fully aquatic life-cycle with virtually no possibility to

reoccupy exposed patches by air. Recovery, hence,

depends mostly on the intrinsic reproduction potential and

dispersal of individuals within a water body from uncon-

taminated patches towards exposed ones. This species also

appeared to be easily studied using automated video

tracking (Augusiak and Van den Brink 2015).

Materials and methods

Test species

Adult A. aquaticus were collected from a non-contami-

nated pond (Duno pond, Doorwerth, The Netherlands) with

sweeping nets, and organisms larger than approximately

5 mm were transferred to the laboratory. The specimens

were kept in a 30 L aquarium in a climate-controlled room

at 18 �C and a 10:14 light:dark cycle. Prior to the experi-

ments, the organisms were acclimatised to copper-free

water over 1 week by a sequential diluting process of the

original pond water with copper-free water. Dried poplar

leaves were provided as food source ad libitum and aera-

tion was constantly supplied. Individuals for the experi-

ments were chosen randomly from this stock (mean body

length ± standard deviation: 6.4 mm ± 0.66).

Experimental setup

The movement observations were performed in a climate-

controlled room at 20 �C. The test setup consisted of a

camera mounted above an aquarium of 1 m2, which was

filled with a 0.5 cm layer of quartz sand and 10 cm of

copper free tap water. Before the observations, individual
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specimens were marked with rectangular paper snippets of

approximately 2 9 2 mm, left for 1 h to recover from the

marking procedure, and introduced into the aquarium.

Small droplets of cyanoacrylate (Pattex, Gold Gel) were

used to fix the marker to the backs of the Asellus. After

introduction into the aquarium and 30 min acclimation

time, animal movements were recorded for 1 h and the

tracks statistically evaluated to determine movement rela-

ted parameters. We used a digital single-lens reflex camera

(EOS 1100D, Canon) for the recordings, which was con-

nected to a computer. Four of such aquarium-camera

combinations were installed in parallel within a water bath

that maintained constant temperatures. See Augusiak and

Van den Brink (2015) for further details about the used

methodology.

Water temperature, pH and dissolved oxygen were

measured twice every day to ascertain stable conditions

throughout the experimental period. All experiments were

carried out at a water temperature of 20 ± 0.8 �C, an

average pH of 7.6 ± 0.3 (measured with electrode pH323,

WTW Germany) and an average dissolved oxygen level of

8.6 ± 0.3 mg/L (measured with oximeter Oxi330 equipped

with sensor CellOx 325, WTW Germany).

Test chemicals: application, sampling, and analysis

Exposure concentrations were derived from toxicity tests

performed prior to the behavioural study (see Online

Resource 1 for details). Solutions of chlorpyrifos were

prepared by spiking copper-free water with an aqueous

stock solution of chlorpyrifos (480 g/L) to reach exposure

concentrations of 0, 0.6 and 1.5 lg/L (48 h-EC50 =

3.2 lg/L, 48 h-EC10 = 2.7 lg/L, Online Resource 1).

Water samples from the controls and exposure vessels

were taken at the start and after 48 h of exposure to confirm

concentrations. In the beginning, 200 mL samples were

taken from the spiked batch volume; at the end, 200 mL

per exposure vessel were sampled. Chlorpyrifos was

measured by liquid–liquid extraction with 20 mL n-hexane

followed by gas chromatography coupled with electron

capture detection (GC-ECD). The specifications for the

sample analysis via GC-ECD were in accordance with the

study by Rubach et al. (2011).

Dosing solutions of imidacloprid were prepared by

mixing a soluble formulation containing 200 g imidaclo-

prid/L into copper-free water, yielding an 80 ppm stock

solution, which was used to spike the exposure solutions of

0, 37.5 and 75 lg/L (48 h-EC50 = 603 lg/L, 48 h-

EC10 = 225 lg/L, Online Resource 1). Water samples

from the controls and exposure vessels were taken at the

start and after 48 h of exposure to confirm concentrations.

For this, samples of approximately 3 mL were transferred

into 4 mL glass vials that contained 1 mL acetonitrile.

After mixing, the vials were stored at -20 �C prior to

analysis. Specifications for the water sample analysis via

liquid chromatography–tandem mass spectrometry (LC–

MS/MS) were analogous to the study by Roessink et al.

(2013).

Test conditions

To study the effects of sublethal pesticide exposure on the

dispersal behaviour, specimenswere exposed to the respective

pesticide concentration for 48 hprior to themarkingandvideo

observation procedure. After 48 h, the animals were removed

from the exposure vessels and transferred into clean, copper-

free tap water. Water quality parameters were measured in

the beginning and the end of the exposure phase and water

samples taken for chemical analysis at the same time. During

the chlorpyrifos exposure, the water temperature was

20.1 ± 1.6 �C, the average pHwas 6.8 ± 0.8 (measuredwith

electrode pH323, WTWGermany) and the average dissolved

oxygen level was 7.9 ± 0.2 mg/L (measured with oximeter

Oxi330 equipped with sensor CellOx 325, WTW Germany).

During the imidacloprid exposure the water temperature was

20.0 ± 1.4 �C, the average pH 7.8 ± 0.2 and the average

dissolved oxygen level was 7.5 ± 1.2 mg/L. Control groups

were kept under similar conditions, except that no pesticide

was added.

To test the effect of potential food items being present,

we cut leaves found in the animals’ native environment

into 5 9 5 cm rectangular pieces and hung four such

fragments at evenly distributed spots into the water in the

arenas. We used simple threads to fix the leaves and

adjusted the vertical position in the water phase so that the

leaf material was just immersed. Shelter experiments, on

the other hand, were conducted with 5 9 10 cm big rect-

angles of stainless steel mesh wire structures that were

placed at six evenly distributed spots in each arena. Control

groups were handled similarly, except that no items were

added to the arena. All experiments were conducted with

two population densities, one and fifty individuals per

arena, respectively, and were replicated twenty times each

(Augusiak and Van den Brink 2015).

Data analysis

We used the open source software ImageJ (Abramoff et al.

2004) to extract animal tracks from the recorded movies.

Tracks within a 10 cm margin of the arena’s walls were

dismissed to exclude potential bias due to edge behaviour

(Creed and Miller 1990). The obtained time series of (x, y)-

coordinates of the animals’ positions were analysed using

the R software (R Core Team 2013) and the package

‘‘adehabitatLT’’ (Calenge 2006).
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We defined relocations of less than 1 mm as resting

moments (Augusiak and Van den Brink 2015), and calcu-

lated resting time per individual as the percentage time that

the respective individual spent not moving. During periods

of activity, behaviour was further characterized by step

lengths and turning angles. Step length is defined as the

distance covered per time interval, whereas angles between

successive moves were measured as deviation from straight

locomotion in degrees (±180�) (see Fig. 1a for a schematic

representation of the path components). Since these metrics

depend on the physical or temporal scale at which they are

measured, we chose to further calculate the fractal

dimension of each individual’s path. The fractal dimension

is a measure of a path’s tortuosity and quantifies an object’s

ability to cover the Euclidian space through which it nav-

igates scale-independently (Seuront et al. 2004b). The

parameter values range between D = 1 (straight line) to

D = 2 (Brownian motion). We used the Fractal Mean

Estimator contained in the Fractal software made available

by Nams (1996) to calculate the fractal dimension for each

path. If multiple paths were obtained for one individual, a

mean value was estimated. The software makes use of the

divider method (Mandelbrot 1967) and calculates the tra-

jectory length (L) over a range of divider sizes (d; see

Fig. 1b for a schematic illustration) such that

L dð Þ ¼ kd1�D

where k is constant, and D the fractal dimension of the

trajectory. The fractal dimension can be calculated from a

subsequent regression of log(L) as a function of log(d). We

used 200 divider sizes (d) ranging from approximately half

of a species’ body size (Asellus: 0.25 cm) to the observa-

tion scale of 100 cm. Movement tracks shorter than 5

relocation points were excluded from the estimation of

fractal dimension values to facilitate a robust regression.

For consistency among compared parameters, we limited

the remaining data analysis to the same range.

The assumption of normality was violated for all vari-

ables, except a transformed version of the fractal dimension

[log(D-1) transformed], restricting us to mostly non-para-

metric tests to assess differences between experimental

conditions. Wilcoxon’s rank sum tests were applied to test

for pairwise differences of resting times and step lengths

between treatments, Kruskal–Wallis tests were used for

comparing more than two treatments. To determine differ-

ences between fractal dimension values, we used the

Welch’s t test, or in case of comparing more than two

treatments, ANOVA. Standard methods of circular statistics

were used to analyse the turning angles. Since the angular

distributions exhibited varying concentration parameters j,
we used the non-parametric Watson–Wheeler test to com-

pare treatment effects (Batschelet 1981). Significances were

assessed at a 95 % confidence level.

The paths recorded under different experimental con-

ditions were further analysed for deviances with a corre-

lated random walk (CRW) model following the steps laid

out in Turchin (1998). This type of model is suitable for

evaluating paths in homogeneous environments and can be

used to estimate the population dispersal rate within the

respective substrate (Turchin 1998). For an analysis of

movement paths according to the CRW model framework,

a series of statistical approaches needs to be applied to test

whether model assumptions are met.

The primary assumption in CRW models is that the

organisms exhibit some degree of directional persistence,

i.e. the stronger the directional persistence, the faster the

population is assumed to spread. This can be checked

visually via the frequency distribution of observed turning

angles. CRW models furthermore assume that step lengths

and turning angles within a path are not serially correlated

(Turchin 1998). Such correlations can influence the model

output and need to be interpreted accordingly (Turchin

1998; Westerberg et al. 2008; Dray et al. 2010). Auto-

correlation for step-length and turning angles was esti-

mated according to the procedures defined by Dray et al.

(2010). The correlation between the magnitude of turning

angles and step length was estimated using Spearman’s

correlation.

For verifying the applicability of the CRW formulation,

net-squared displacements (Rn
2) were calculated and com-

parisons made between estimated (theoretical) and

observed (actual) values. Observed net-squared displace-

ments were calculated as the squared distance between

each location in an individual’s track and the individual’s

original location. Directional information thereby is

removed by using the square of the distances. According to

the CRW framework, Rn
2 can be estimated and extrapolated

as follows:

R2
n ¼ nL2 þ 2L21

c

1� c
n� 1� cn

1� c

� �

where L1 is the mean move length (cm), L2 is the mean

squared move length (cm2), n is the number of consecutive

moves, and c is the mean cosine of turning angles (Kareiva

and Shigesada 1983; Turchin 1998). The 95 % confidence

interval for the estimated Rn
2 was constructed following a

procedure described by Turchin (1998).

Results

Due to excluding short tracks and tracks within the outer

10 cm margin of the aquaria from the data analysis, we did

not obtain tracking information for all time points. The

number of data points analysed for each test regime along

with the number of paths and their average duration are
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summarised in Table 1. Furthermore, Table 1 lists the

intended and measured concentrations of the two studied

pesticides. The achieved chlorpyrifos concentrations were

approximately 40 % below the intended levels at the start

of the exposure phase. During the course of the exposure

the concentrations dropped due to evaporation, chemical

degradation, and sorption processes. However, the con-

centration difference remained at a factor of approximately

2 between the higher and the lower concentration treat-

ments, indicating that observed changes in behaviour were

still comparable among the different exposures. Achieved

imidacloprid concentrations, on the other hand, were

slightly above the intended levels, with concentrations

decreasing less strongly as in the case of chlorpyrifos.

Observed movement and dispersal

In Fig. 2 the relationship between the observed net-squared

displacements (Rn
2) of A. aquaticus under different testing

conditions and the number of consecutive steps they have

made is represented with dashed lines. Net-squared dis-

placement describes the ability of an organism to disperse,

i.e. the smaller its value the closer an individual is to its

original location. An individual’s Rn
2 over time is influ-

enced by the combination of step lengths and turning

angles it uses. The more active an animal is and the longer

and more directed its subsequent steps are, the faster it will

move away from its original location.

Pesticide exposure

Observed net-squared displacements were reduced by

pesticide exposure compared to the respective controls

(Fig. 2a–e). Higher exposure concentrations thereby

caused stronger decreases in Rn
2 for both substances, except

for the application of the higher chlorpyrifos dosage in the

higher density setup. That treatment also changed the

observed pattern of single individuals dispersing farther

than their counterparts in a group (Fig. 2b). Compared to

the controls, chlorpyrifos exposure increased resting times

and decreased step lengths more than imidacloprid expo-

sure did. The standard deviations of either parameter also

increased but were, irrespective of the substance, concen-

tration, or population density, overall in a more similar

range than the mean values (Table 1). The control group

exhibited slightly bigger average turning angles with lower

variability than the exposed groups did, which however

hardly affected the fractal dimension of the analysed paths.

Resting times were affected significantly for all single-

specimen observations, while step lengths were affected

significantly or marginally significantly for both single-

and 50-specimens observations (Table 2). Chlorpyrifos

exposure had an overall statistically more significant effect

on those parameters than imidacloprid exposure had.

Turning angles and fractal dimension were statistically less

affected by either exposure (Table 2).

Environmental stimuli

Observed Rn
2 were more similar to each other in the food,

shelter, and their respective control tests (Fig. 2f–h) than

was the case for the pesticide tests. The presence of food

items slightly decreased Rn
2 in the single individual setup,

whereas the presence of shelter items did not cause any

observable changes. The biggest effect on observed Rn
2 in

these three setups was caused by population density.

Higher population densities led to decreased Rn
2 (Fig. 2f–

h). Resting times increased compared to the controls when

shelter or food items were introduced to the arena

(Table 2). In the presence of shelter, resting times were

equal among the different population densities. When food

items were present, the single- and 50-individual specimen

maintained the approximate 10 % difference that we also

found in the control groups. Average step lengths remained

virtually the same in the presence of food items, and were

slightly lower, although not significant, when shelter items

were available. Amongst the different treatments, the

observed individuals increased resting times and decreased

average step lengths when they were with conspecifics

compared to the respective single-specimen setups, prob-

ably due to the increased ‘‘traffic’’. Average turning angles

increased in the presence of food items, while the presence

of shelter items left this parameter unaffected. The fractal

dimension decreased slightly more when shelter items were

available than when food items were present (Table 1). The

variability of these parameters was less affected by either

Fig. 1 a Illustration of the components of a movement path. Solid

lines represent the distance Di travelled per time interval (step length).

The dashed lines indicate the turning angle (h) as the deviation from

straight-line locomotion measured in degrees (±180�). b Schematic

of the divider method. Two steps of the analysis are shown, using two

different divider lengths d (Adapted from Seuront et al. 2004a, b)
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treatment than observed in the pesticide exposure experi-

ments, and no statistical indication of treatment effects

could be detected. These changes indicate that the observed

Asellus started searching for food when food items were

present, while the presence of shelter provided structures

for resting.

Food availability before the experiments had the overall

biggest influence on the observed movement behaviour.

The pesticide control groups did not receive food for 48 h

prior to the experiment. The control groups for testing the

influence of external factors, on the other hand, had access

to food until shortly before the recording. The lack of food

caused an increase in observed net-squared displacement

(Fig. 2a, f), which can be explained by a statistically sig-

nificant reduced resting time and increased step lengths

(Table 1). While the turning angle range hardly changed,

the fractal dimension decreased slightly, indicating that the

observed animals changed to overall more linear move-

ments. Additionally, the differences in resting times and

step lengths found between the single- and 50-specimen

setups disappeared when the individuals were starved

(Table 1).

Fig. 2 Relationship between the mean net-squared displacement (Rn
2;

cm2) and the number of consecutive moves made by A. aquaticus

under different experimental conditions. Doted lines: observed mean

net-squared displacement obtained by averaging over 20 observed

individuals; dashed lines: estimated net-squared displacement

obtained by applying the observed average move distances and

turning angles; solid: 95 % confidence interval of the estimated net-

squared displacement; red stands for the single-Asellus studies and

black for the 50-Asellus studies (Color figure online)
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Table 2 Summary statistics of the statistical tests estimating the significance of the effects of experimental conditions on the movement

behaviour of A. aquaticus

Resting timesa,b Step lengthsc,d Turning anglee Fractal Da,b,* Spearman’s rank correlation between turning angle and step length

t p U p W p df t p r p

Pesticides

Chlorpyrifos low

1 -3.26 \0.01 238 0.02 2.24 0.33 2 0.22 0.83 -0.29 \0.01

50 -0.08 0.94 246 \0.01 2.23 0.33 2 -2.20 0.03 -0.38 \0.01

Chlorpyrifos high

1 -3.74 \0.01 312 \0.01 5.96 0.05 2 -1.73 0.09 -0.49 \0.01

50 -1.05 0.31 233 \0.01 4.37 0.11 2 -0.54 0.59 -0.40 \0.01

Imidacloprid low

1 -3.10 \0.01 330 \0.01 6.70 0.04 2 1.01 0.32 -0.41 \0.01

50 -1.16 0.26 298 \0.01 0.37 0.83 2 -1.55 0.13 -0.42 \0.01

Imidacloprid high

1 -2.25 0.03 340 \0.01 3.83 0.15 2 1.36 0.18 -0.51 \0.01

50 -0.75 0.46 247 0.05 3.89 0.14 2 1.97 0.06 -0.36 \0.01

Controls

Control (starved)

1 -2.43 0.02 226 0.19 4.78 0.09 2 1.93 0.06 -0.25 \0.01

50 -2.12 0.04 311 \0.01 3.89 0.14 2 -0.71 0.48 -0.23 \0.01

Control (fed)

1 -0.25 \0.01

50 -0.39 \0.01

Environmental factors

Food

1 -1.19 0.32 235 0.35 3.73 0.15 2 0.65 0.52 -0.22 \0.01

50 -0.84 0.41 233 0.06 0.91 0.63 2 1.72 0.10 -0.21 \0.01

Shelter

1 -0.87 0.39 217 0.46 5.25 0.07 2 1.05 0.30 -0.34 \0.01

50 -0.35 0.73 221 0.24 4.15 0.13 2 -0.90 0.38 -0.43 \0.01

df F p df V2 p df W p df F p

Pesticide concentrations

Chlorpyrifos

1 28.4 10.75 \0.01 2 18.69 \0.01 4 7.42 0.12 35.75 2.15 0.13

50 35.9 5.71 \0.01 2 17.94 \0.01 4 12.92 0.01 36.97 0.94 0.40

Imidacloprid

1 28.8 0.55 0.59 2 9.71 \0.01 4 4.57 0.33 36.35 2.73 0.08

50 33.5 0.75 0.48 2 9.23 0.01 4 3.90 0.42 37.16 6.67 \0.01

Parametric tests were applied for evaluating effects on resting times and a transformed version of the fractal dimension, while non-parametric

tests were chosen in the case of step lengths and turning angles. For additional insights into effect sizes, the correlations of step lengths and

turning angles were estimated for each treatment
a Welch’s t test for 2-sample comparison
b Welch’s ANOVA for multi-sample comparison
c Mann–Whitney U test for 2-sample comparison
d Kruskal–Wallis test for multi-sample comparison
e Watson–Wheeler test for 2- and multi-sample comparison

* Fractal dimension was log(D-1) transformed prior to statistical testing
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Correlation and autocorrelation

Most observed individuals in the various treatments dis-

played directional persistence forwards (Table 2), meeting

the central assumption made under the CRW framework.

Turning angles were also significant positively auto-cor-

related at lag 1 in most cases, and remained significant for

several lags (see Online Resource 2 for detailed results),

representing a tendency to make sequential turns in the

same direction. Furthermore, auto-correlations in step

lengths were significant positive at lag 1 for almost all

individuals, and remained significant for a number of lags

(Online Resource 2), which suggests that most individuals

maintained similar walking speeds for a number of steps. In

all treatments, step lengths and turning angles were sig-

nificant negatively correlated (Table 2), i.e. larger changes

in direction were performed only when the individuals

slowed down, and average angles decreased with increas-

ing walking speed.

Dispersal estimates

Figure 2, furthermore, compares the observed and esti-

mated net-squared displacements (Rn
2) of A. aquaticus

under different testing conditions. The CRW model over-

predicts observed Rn
2 in cases where the observed path is

more tortuous than assumed by the model. In cases of

underestimation, the observed path is straighter or the

animal activity lower than expected.

Generally, we found that estimated Rn
2 exceeded the

observed values for the non-pesticide, single-specimen

observations, while observed Rn
2 were mostly underesti-

mated after pesticide exposure. Exceptions are the lower

chlorpyrifos and the starved control treatments. At the

higher population density this pattern changes and all

observed Rn
2 exceed the estimated values except for the

starved control group (Fig. 2a–e). In the latter case, the

model fits the observed pattern better for the non-pesticide

treatments during the initial steps compared to the pesticide

treatments. However, the CRW models do not provide a

good overall fit to the observed displacements (Fig. 2). The

closest fits were found for the higher population density

when the observed individuals were fed, and when food

items were present (Fig. 2g).

Discussion

This study aimed to improve insights into the small-scale

movement behaviour of A. aquaticus and to evaluate its

potential as endpoint in ecotoxicological studies with

aquatic macroinvertebrates. The employed video-tracking

method (Augusiak and Van den Brink 2015) allowed the

detection of already small changes in the exhibited beha-

viour, although the high inter-individual variability of the

analysed parameters made it difficult to detect statistical

significant treatment effects. Our results indicate that the

locomotory behaviour and dispersal potential of A. aquati-

cus were negatively affected by exposure to sublethal

concentrations of chlorpyrifos and imidacloprid, while the

presence of food or shelter items reduced the dispersal rate

less significantly. In most cases, an increased population

density lowered dispersal rates further. The observed

effects on the small-scale behaviour also affected the dis-

placement extrapolations.

The pesticides were chosen because of their relatively

low elimination rates, making it likely that exposed indi-

viduals still experience pesticide related effects when

placed in clean water that then can be observed. Rubach

et al. (2010) report a 95 % depuration time of 16.2 days for

chlorpyrifos in A. aquaticus and of 7.5 days for adult

Gammarus pulex, a freshwater shrimp species. In the case

of imidacloprid, Ashauer et al. (2010) determined a 95 %

depuration period of 11.2 days for G. pulex. We assumed a

continued causation of damage on the nervous system of

A. aquaticus during the experimental time frame also in the

case of imidacloprid. First estimations based on acute

toxicity data of imidacloprid exposure, yielded a 95 %

depuration period of about 4.4 days for Asellus (Focks

2015—personal communication).

The fact that G. pulex exhibits significantly higher

sensitivities to both chemicals with regard to mobility and

survival indicates that surviving individuals could possess a

more efficient elimination pathway compared to Asellus,

allowing the conclusion that the internal concentrations in

our study should be stable over the period of time of

observation. To test whether changes in locomotion are still

observable at sublethal levels, we aimed to apply about 50

and 25 %, respectively, of the observed 48 h-EC10 of

2.7 lg/L in the case of chlorpyrifos (Rubach et al. 2011:

48 h-EC10 = 3.3 lg/L). Due to a wider range of reported

ECx values, we opted for a slightly higher safety factor for

imidacloprid and chose to continue with about 30 and

15 %, respectively, of the observed 48 h-EC10 value of

225 lg/L (geometric mean of studies reported by Roessink

et al. (2013) and Van den Brink et al. (2015): 48 h-

EC10 = 54 lg/L). The applied concentrations are also

likely to occur in the environment. Concentrations of up to

10.8 lg/L of chlorpyrifos were detected in freshwater

habitats throughout the past decade (Marino and Ronco

2005; Ensminger et al. 2013), while imidacloprid has been

found at concentrations of up to 320 lg/L (Van Dijk et al.

2013; Ensminger et al. 2013).

In natural environments, the dispersal and local

recruitment of aquatic macroinvertebrates is strongly dri-

ven by the availability of food, shelter, and population
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density (Holyoak et al. 2008). Food items may release

chemicals during the degradation process, which then can

be sensed by an organism equipped with the respective

sensing systems (Collin and Marshall 2003). This can

subsequently cause an alteration in the organism’s

searching behaviour, for example a switch from long,

straight moves to a Brownian pattern for local searching

together with a change of activity (Collin and Marshall

2003). Similarly, a lack of food may drive animals away

from their current location to search for new resources.

Shelter, on the other hand, can impact overall movement by

providing protection from high temperatures, light, or

predators (Obermüller et al. 2007). However, there is a lack

of understanding to which degree the presence of food or

shelter items can influence the movement and searching

behaviour of aquatic invertebrates, or how it may addi-

tionally be driven by population density, either by com-

pensating for interspecies competition or improving mating

chances (Smith et al. 2008; Delgado et al. 2013).

Understanding the innate nature of movement beha-

viour, and to which degree different factors influence it,

can help extrapolating small-scale observations to gain an

impression on the ecological consequences of chemical or

physical disturbances (Getz and Saltz 2008). In Table 3,

we summarize a number of studies aiming to highlight the

influences of chemical exposure or naturally occurring

drivers, such as predator cues, on the movement behaviour

of aquatic macro invertebrates. We found that most pub-

lished studies on aquatic invertebrates either focused on

environmental cues or chemical exposure, while none

related the extent of behavioural changes under sublethal

exposure conditions to the innate behavioural range to

draw conclusions about potential ecological impact.

Observational studies that do investigate such relationships

usually use food consumption rates or preferences as

endpoint instead of movement (for examples see De Lange

et al. 2006b; Agatz et al. 2014). The study by (Rodrigues

et al. 2016) forms a rare exception, where the effects of

sublethal exposure of freshwater planarians to chlo-

rantraniliprole are investigated through observing changes

in feeding behaviour and locomotion.

The strong reductions in observed dispersal distances

after pesticide exposure were mostly caused by decreased

step lengths and increased resting times, which agrees with

previous reports of hypoactivity caused by both substances

(Rice et al. 1997; Suchail et al. 2001). Step lengths were

significantly reduced by all pesticide treatments, while

resting time was more affected by exposure to chlorpyrifos

than to imidacloprid. The turning behaviour, i.e. direc-

tionality, was not significantly different from that observed

in the controls after pesticide exposure, although the vari-

ability was higher after exposure (Table 2). These effects

are in accordance with the modes of action of the used

insecticides. Both substances disturb neural signal regula-

tion to a degree that neurological activity of nerves remains

lastingly stimulated, which eventually leads to muscle

spasms and paralysis. Chlorpyrifos does so by inactivating

the enzyme that hydrolyses acetylcholine, and imidacloprid

by activating nACh receptor. The more pronounced effects

we found in the case of chlorpyrifos exposure, i.e. the

increase in resting time coupled with a decrease in average

step length, might be associated with the irreversibility of

the enzyme activation, while the nAChR stimulation

through imidacloprid is reversible. The reduced step

lengths and changes in resting behaviour indicate that

muscle malfunction may have set in already at the time of

observation. The increased variability of turning angles can

be explained by either muscular impairment or additional

neurological effects affecting the individuals’ ability to

navigate. Based on a study by Azevedo-Pereira et al.

(2011) we would speculate to find effects of exposure to

chlorpyrifos and imidacloprid to converge further after an

extended exposure duration or at increased concentrations.

In their study, Azevedo-Pereira et al. (2011) measured

AChE activity along with behavioural endpoints after

exposure of Chironomus riparius larvae to imidacloprid

and found that AChE activity also decreased with

increasing concentration after 96 h of exposure onward.

The chain of physiological effects of AChE inhibition in

Asellus, respectively, would lead to a decrease in overall

activity as would be the case after exposure to chlorpyrifos,

which directly inhibits AChE activity.

Dose–response or population density related effects

were less conclusive in our study. While at the higher

concentrations, the higher population densities appear to

incite higher activity and slightly larger step lengths,

compared to their single-individual equivalents, no such

pattern could be identified for the lower concentration

treatments. This aspect, together with the high individual

variability in behaviour only demonstrates that more

research is needed fully understand the sublethal impacts of

pesticide exposure on ecologically relevant functions.

Eventually, reduced locomotion is likely to interfere with

foraging activities as observed by Agatz et al. (2014) in the

case of Gammarids. Decreased energy available from

feeding and increased energy expenditure for internal

repair mechanisms, in turn, may lead to reduced growth

and mating (Martin et al. 2012).

In our study, the impact on organisms exposed to imi-

dacloprid may be less drastic compared to chlorpyrifos due

to the higher safety factor that we assumed. However, the

significance of pesticide exposure becomes clearer, when

seen in comparison to the non-pesticide treatments. The

presence of food slightly lowered the dispersal potential by

affecting orientation moments and variation of turning

angles, indicating that the animals were indeed adjusting
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Table 3 Literature survey of studies investigating the influence of chemicals and/or environmental conditions on aquatic macroinvertebrate

locomotion in the laboratory

Observational method Species Experimental

dimension

Variable Movement related

metrics

Reference

Camera A. aquaticus,

Gammarus pulex

Aquaria (100 L) Population density Speed, turning angles,

fractal dimension

Augusiak and Van den

Brink (2015)

Acilius sulcatus Aquaria (100 L) Kairomones Distance Åbjörnsson et al.

(1997)

Balanus amphitrite Petri dishes Various antifouling

biocides,

Heavy metals,

Neurotoxic

pesticides

Swimming speed Faimali et al. (2006)

Brachionus

calyciflorus

Glass chamber Copper,

Pentachlorophenol

(PCP),

Lindane

Speed, sinuosity Charoy and Janssen

(1999)

Food presence,

nutritive state

Charoy (1995)

Copper,

Pentachlorophenol

(PCP),

Lindane,

3,4-dichloroaniline

Charoy et al. (1995)

Well-plates Dimethoate Speed, sinuosity, turning

angles

Guo et al. (2012)

Brachionus

calyciflorus,

Asplanchna

brightwelli

Well-plates Dimethoate Speed Chen et al. (2014)

Brachionus

plicatilis,

Artemia sp.

Petri dishes, well-

plates

Zinc pyrithione,

Macrotrol� mt-200,

Eserine

Speed Garaventa et al. (2010)

Daphnia pulex Exposure cells

(20 mL)

Isopropanol,

Ethanol,

Caffeine,

Imidacloprid,

Sertraline,

Copper sulfate,

Fipronil,

Carbofuran,

Esfenvalerate,

Cypermethrin,

Abamectin,

Trichlorfon

Speed, turning angles,

activity

Chevalier et al. (2015)

Beaker (200 mL) Carbaryl,

Kairomones

Speed, turning angles,

diel movement

Dodson et al. (1995)

Well-plates Chlorpyrifos,

Nicotine,

Physostigmine

Distance, turning angles Zein et al. (2014)

Eurytemora affinis Beaker (200 mL) Nonylphenols Speed Cailleaud et al. (2011)
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their searching efficiency. Shelter items on the other hand

caused a comparable reduction in dispersal. However,

mechanistically it resulted from an effect on activity by

reducing step lengths and increasing resting times. The

presence of conspecifics affected reorientation less as could

probably be expected than that it increased resting times in

most cases, respectively reducing overall dispersal. The

differences between the fed and starved control groups,

however, indicate that the feeding state could potentially

change this and reduce the need of shelter availability.

Table 3 continued

Observational method Species Experimental

dimension

Variable Movement related

metrics

Reference

Gammarus pulex Petri dishes, stream

mesocosms

Lambda-cyhalothrin Speed, activity, drift Nørum et al. (2010)

Petri dishes Cypermethrin Speed, activity Nørum et al. (2011)

Litopenaeus

vannamei

Aquaria (7 L) Methamidophos Activity, qual.

Observations

Garcı́a-de la Parra

et al. (2006)

Oncaea venusta Small plastic tanks Inherent individual

variability

Speed, distance Seuront et al.

(2004a, b)

Rana temporaria

tadpoles

Small plastic tanks Endosulfan Speed, activity Denoël et al. (2013)

Multispecies

freshwater

biomonitor

Chironomus larvae Beaker (ca

200 mL)

Imidacloprid Ventilation, activity Azevedo-Pereira et al.

(2011)

Daphnia magna Dipterex,

Malathion,

Parathion,

Dimethyl sulfoxide

Motility Ren et al. (2007)

Dichlorvos,

Malathion,

Parathion,

Methyl parathion

Ren et al. (2008)

Gammarus pulex Pharmaceuticals Ventilation, activity De Lange et al.

(2006a, 2009)

Time of day Ventilation, activity Peeters et al. (2009)

Echinogammarus

meridionalis,

Hydropsyche

pellucidula,

Choroterpes picteti

Acidic mine drainage Ventilation, activity Macedo-Sousa et al.

(2008)

Visual inspection A. aquaticus,

Dendrocoelum

lacteum

Crystallization

dishes (500 mL)

Tebuconazole,

Lambda-cyhalothrin

Activity, predator–prey

interaction

Bundschuh et al.

(2012)

A. aquaticus,

Gammarus pulex

Aquaria (1.5 L) Polycyclic aromatic

hydrocarbons

Avoidance De Lange et al.

(2006b)

Brachionus

calyciflorus

Glass chamber Copper,

Pentachlorophenol

(PCP),

Lindane,

3,4-dichloroaniline

Distance walked Janssen et al. (1994)

Chaoborus

flavicans larvae

Aquaria (12 L) Kairomones Height in water column Dawidowicz et al.

(1990)

Rana catesbeiana

tadpoles,

Rana

septentrionalis

tadpoles

Aquaria (15 L) Kairomones Mobility Ferland-Raymond

et al. (2010)
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To improve the risk level estimation of chemical

exposure on aquatic arthropod populations in an ecologi-

cally more meaningful way, ecological effect models can

be applied that integrate different habitat, species, and

exposure related information to assess population recovery

timeframes (Galic et al. 2013; Focks et al. 2014).

Accounting for immigrating and emigrating individuals

can help to further the mechanistic understanding derived

from such modelling studies (Van den Brink et al. 2013;

Hommen et al. 2015). The simplified dispersal estimation

via the correlated random walk framework as part of this

study failed to capture the underlying correlations between

turning angles and step lengths, as well as the autocorre-

lation structures of either of these two parameters.

Westerberg et al. 2008 studied the effects of population

density and food availability on collembola described a

similar phenomenon. The mechanistic links of the Asellus

decision making remain to be elaborated for a better model

parameterization. Aggregating the step length data may be

one of those approaches to eliminate the CRW assumption

of non-autocorrelated steps. The high variability of indi-

vidual behaviour expressions is another factor that com-

plicates simple modelling approaches, although it is an

often observed factor in observational studies (Seuront

et al. 2004a; Nørum et al. 2010). Hawkes (2009) conse-

quently propose to account explicitly for this variability

when designing models of habitat use and dispersal,

respectively, an approach that is ignored by the application

of simple average values in our study. Integrating findings

such as ours into a more complex model can facilitate a

better understanding of the complex interactions of chem-

ical exposure and resource availability and their impacts on

population recovery times, allowing also for the study of

long-term impacts of exposure events.
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